×

zbMATH — the first resource for mathematics

Local bifurcations of the Chen system. (English) Zbl 1047.34044

MSC:
34C23 Bifurcation theory for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34C60 Qualitative investigation and simulation of ordinary differential equation models
34A34 Nonlinear ordinary differential equations and systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/S0375-9601(00)00777-5 · Zbl 0972.37019
[2] DOI: 10.1142/S0218127402005467 · Zbl 1043.37023
[3] DOI: 10.1142/3033
[4] DOI: 10.1142/S0218127499001024 · Zbl 0962.37013
[5] Hassard B., Theory and Application of Hopf Bifurcation (1981) · Zbl 0474.34002
[6] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129
[7] DOI: 10.1016/S0375-9601(01)00383-8 · Zbl 0969.37509
[8] DOI: 10.1142/S0218127402004620 · Zbl 1063.34510
[9] DOI: 10.1142/S0218127402004851 · Zbl 1044.37021
[10] DOI: 10.1142/S0218127402005200
[11] Lü J., Chaotic Time Series Analysis and its Application (2002)
[12] DOI: 10.1142/S0218127402004735 · Zbl 1044.37022
[13] Lu J., Appl. Math. Mech. 24
[14] DOI: 10.1038/35023206
[15] Ueta T., Int. J. Bifurcation and Chaos 10 pp 1917–
[16] Vanĕcek A., Control Systems: From Linear Analysis to Synthesis of Chaos (1996)
[17] Wang X., Contr. Theor. Appl. 16 pp 779–
[18] Wang X., Int. J. Bifurcation and Chaos 10 pp 549–
[19] Xue Y., Quantitative Study of General Motion Stability and an Example on Power System Stability (1999)
[20] Yang B. L., Acta Phys. Sinica 49 pp 1039–
[21] Yu X., Int. J. Bifurcation and Chaos 10 pp 1987–
[22] Zhang S., Mathematical Theory and Numerical Method of Modern Oscillatory Reaction (1991)
[23] DOI: 10.1142/S0218127402005224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.