×

zbMATH — the first resource for mathematics

On the elliptic balance method. (English) Zbl 1047.70001
From the summary: The objective is to apply a novel perturbation technique called the elliptic balance method (EBM) to obtain an approximate solution for nonlinear two-degree-of-freedom systems. Two examples are presented to compare the EBM solution with numerical integration. The first is related to a damped nonlinear system with two degrees of freedom that describes the dynamical behavior of a viscohyperelastic simple shear suspension system with an undamped linear absorber, and the second is related to a damped nonlinear mechanical model. It is shown that its amplitude-time response can be accurately described by the EBM solution even for moderate values of damping coefficients \(\nu_i\) and a nonlinear parameter \(\varepsilon\).

MSC:
70-08 Computational methods for problems pertaining to mechanics of particles and systems
70K60 General perturbation schemes for nonlinear problems in mechanics
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [2] Hsu, C.S.: On the application of elliptic functions in nonlinear forced oscillations . Q. Appl. Math., 17, 393-407 (1960). · Zbl 0087.39203 · doi:10.1090/qam/110250
[2] [3] Iwan, W.D.: On defining equivalent systems for certain ordinary nonlinear differential equations . Int. J. Nonlinear Mech., 4, 325-334 (1969). · Zbl 0208.12002 · doi:10.1016/0020-7462(69)90030-4
[3] [4] Hsu, C.S.: Some simple exact periodic responses for a nonlinear system under parametric excitation . J. Appl. Mech. 1135-1137 (1974). · doi:10.1115/1.3423455
[4] [6] Detinko, F.M.: Applications of Jacobian elliptic functions to the analysis of forced vibrations of a nonlinear conservative system . Mech. Solids, 31(4), 5-8 (1996).
[5] [7] Barkham, P.G.D. and Soudack, A. C.: An extension to the method of Kryloff and Bogoliuboff . Int. J. Control, 10, 377-392 (1969). · Zbl 0176.46702 · doi:10.1080/00207176908905841
[6] [8] Soudack, A. C. and Barkham, P.G.D.: On the transient solution of the unforced Duffing equation with large damping . Int. J. Control, 13, 767-769 (1971). · Zbl 0217.28301 · doi:10.1080/00207177108931981
[7] [9] Christopher, P.A.T.: An approximate solution to a strongly nonlinear, second order, differential equation . Int. J. Control, 17, 597-608 (1973). · Zbl 0256.34009 · doi:10.1080/00207177308932406
[8] [10] Christopher, P.A.T. and Brocklehurst, A.: A generalized form of an approximate solution to a strongly nonlinear, second order, differential equation . Int. J. Control, 19, 831-839 (1974). · Zbl 0274.34012 · doi:10.1080/00207177408932676
[9] [11] Bravo Yuste, S. and Diaz Bejarano, J.: Construction of approximate analytical solutions to a new class of nonlinear oscillator equations . J. Sound Vib., 110, 347-350 (1986). · Zbl 1235.70146 · doi:10.1016/S0022-460X(86)80215-2
[10] [12] Bravo Yuste, S. and Diaz Bejarano, J.: Amplitude decay of damped nonlinear oscillators studied with Jacobian elliptic functions . J. Sound Vib., 114, 33-44 (1987). · Zbl 1235.70060 · doi:10.1016/S0022-460X(87)80231-6
[11] [13] Bravo Yuste, S. and Diaz Bejarano, J.: Extension and improvement to the Krylov-Bogoliubov methods using elliptic functions . Int. J. Control, 49, 1127-1141 (1989). · Zbl 0691.34029 · doi:10.1080/00207178908559696
[12] [14] Diaz Bejarano, J. and Margallo, J. G.: Stability of limit cycles and bifurcations of generalized Van Der Pol oscillators: X + AX - 2BX3 + #949;(z3 + z2X2 + z1X4)X = 0 . Int. J. Nonlinear Mech., 25, 663-675 (1990). · Zbl 0732.70015 · doi:10.1016/0020-7462(90)90005-T
[13] [15] Coppola, T. and Rand, R. H.: Averaging using elliptic functions: approximation of limit cycles . Acta Mech., 81, 125-142 (1990). · Zbl 0699.34032 · doi:10.1007/BF01176982
[14] [16] Bravo Yuste, S. and Diaz Bejarano, J.: Improvement of a Krylov-Bogoliubov method that uses Jacobi elliptic functions . J. Sound Vib., 139, 151-163 (1990). · Zbl 1235.70145 · doi:10.1016/0022-460X(90)90781-T
[15] [17] Bravo Yuste, S.: Comments on the method of harmonic balance in which Jacobi elliptic functions are used . J. Sound Vib., 145, 381-390 (1991). · doi:10.1016/0022-460X(91)90109-W
[16] [18] Bravo Yuste, S.: Quasi-pure-cubic oscillators studied using a Krylov-Bogoliubov Method . J. Sound Vib., 158, 267-275 (1992). · Zbl 0925.70251 · doi:10.1016/0022-460X(92)90050-8
[17] [19] Bravo Yuste, S.: Cubication of nonlinear oscillators using the principle of harmonic balance . Int. J. Nonlinear Mech., 27, 347-356 (1992). · Zbl 0766.70016 · doi:10.1016/0020-7462(92)90004-Q
[18] [20] Chen, S.H. and Cheung, Y.K.: An elliptic perturbation method for certain strongly nonlinear oscillators . J. Sound Vib., 192, 453-464 (1996). · Zbl 1232.70017 · doi:10.1006/jsvi.1996.0197
[19] [21] Chen, S.H. and Cheung, Y.K.: An elliptic Lindstedt-Poincaré method for analysis of certain strongly nonlinear oscillators . Nonlinear Dyn., 12, 199-213 (1997). · Zbl 0881.70015 · doi:10.1023/A:1008267817248
[20] [22] Chen, S.H., Yang, X.M., and Cheung, Y.K.: Periodic solutions of strongly quadratic nonlinear oscillators by the elliptic perturbation method . J. Sound Vib., 212, 771-780 (1998). · Zbl 1235.70062 · doi:10.1006/jsvi.1997.1411
[21] [23] Cveticanin, L.: Analytical methods for solving strongly nonlinear differential equations . J. Sound Vib., 214, 325-338 (1998). · Zbl 1235.65093 · doi:10.1006/jsvi.1998.1560
[22] [24] Bejarano, J.D. and Margallo, J.G.: The greatest number of limit cycles of the generalized Rayleigh-Lienard oscillator . J. Sound Vib., 221, 133-142 (1999). · doi:10.1006/jsvi.1998.1997
[23] [25] Chen, S.H. and Yang, X.M.: Periodic solutions of strongly quadratic nonlinear oscillators by the elliptic Lindstedt-Poincaré method . J. Sound Vib., 227, 1109-1118 (1999). · Zbl 1235.70110 · doi:10.1006/jsvi.1999.2399
[24] [26] Beatty, M.F.: Stability of a body supported by a simple vehicular shear suspension system . Int. J. Non-Linear Mech., 24, 65-77 (1989). · Zbl 0665.73042 · doi:10.1016/0020-7462(89)90012-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.