zbMATH — the first resource for mathematics

A level set approach to Eulerian–Lagrangian coupling. (English) Zbl 1047.76567
Summary: We present a numerical method for coupling an Eulerian compressible flow solver with a Lagrangian solver for fast transient problems involving fluid–solid interactions. Such coupling needs arise when either specific solution methods or accuracy considerations necessitate that different and disjoint subdomains be treated with different (Eulerian or Lagrangian) schemes. The algorithm we propose employs standard integration of the Eulerian solution over a Cartesian mesh. To treat the irregular boundary cells that are generated by an arbitrary boundary on a structured grid, the Eulerian computational domain is augmented by a thin layer of Cartesian ghost cells. Boundary conditions at these cells are established by enforcing conservation of mass and continuity of the stress tensor in the direction normal to the boundary. The description and the kinematic constraints of the Eulerian boundary rely on the unstructured Lagrangian mesh. The Lagrangian mesh evolves concurrently, driven by the traction boundary conditions imposed by the Eulerian counterpart. Several numerical tests designed to measure the rate of convergence and accuracy of the coupling algorithm are presented as well. General problems in one and two dimensions are considered, including a test consisting of an isotropic elastic solid and a compressible fluid in a fully coupled setting where the exact solution is available.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76N15 Gas dynamics (general theory)
76L05 Shock waves and blast waves in fluid mechanics
PDF BibTeX Cite
Full Text: DOI
[1] Noh, W.F., CEL: a time dependent two space-dimensional, coupled eulerian Lagrangian code, (), 117
[2] Kershaw, D.; Prasad, M.; Shaw, M.; Milovich, J., 3D unstructured mesh ALE hydrodynamics with the upwind discontinuous finite element method, Comput. meth. appl. mech. eng., 158, 81, (1998) · Zbl 0954.76045
[3] Soria, A.; Casadei, F., Arbitrary lagrangian – eulerian multicomponent compressible flow with fluid – structure interaction, Int. J. numer. meth. fluids, 25, 1263, (1997) · Zbl 0906.76069
[4] Hu, H.H.; Patankar, N.A.; Zhu, M.Y., Direct numerical simulations of fluid-solid systems using the arbitrary lagrangian – eulerian techique, J. comput. phys., 169, 427, (2001) · Zbl 1047.76571
[5] Fadlun, E.A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. comput. phys., 161, 35, (2000) · Zbl 0972.76073
[6] Pember, R.B.; Bell, J.B.; Colella, P.; Crutchfield, W.Y.; Welcome, M.L., An adaptive Cartesian method for unsteady compressible flow in irregular regions, J. comput. phys., 120, 278, (1995) · Zbl 0842.76056
[7] Falcovitz, J.; Alfandary, G.; Hanoch, G., A two-dimensional conservation laws scheme for compressible flows with moving boundaries, J. comput. phys., 138, 83, (1997) · Zbl 0901.76044
[8] Fedkiw, R.P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows, J. comput. phys., 152, 457, (1999) · Zbl 0957.76052
[9] Fedkiw, R.P., Coupling an eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. comput. phys., 175, 200, (2002) · Zbl 1039.76050
[10] Fedkiw, R.P.; Aslam, T.; Xu, S., The ghost fluid method for deflagration and detonation discontinuities, J. comput. phys., 154, 393, (1999) · Zbl 0955.76071
[11] Forrer, H.; Berger, M., Flow simulations on Cartesian grids involving complex moving geometries flows, Int. ser. numer. math., 129, birkhäuser, basel, 1, 315, (1998) · Zbl 0936.76040
[12] Forrer, H.; Jeltsch, R., A higher-order boundary treatment for Cartesian-grid methods, J. comput. phys., 140, 259, (1998) · Zbl 0936.76041
[13] Mulder, W.; Osher, S.; Sethian, J.A., Computing interface motion in compressible gas dynamics, J. comput. phys., 100, 209, (1992) · Zbl 0758.76044
[14] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. comput. phys., 114, 146, (1994) · Zbl 0808.76077
[15] Aivazis, M.; Goddard, B.; Meiron, D.; Pool, J.C.T.; Shepherd, J.E., A virtual test facility for simulating the dynamic response of materials, Comput. sci. eng., 2, 42, (2000)
[16] L. Hill, Detonation product equation-of-state directly from the cylinder test, in: 21st International Symposium on Shock Waves, Great Keppel Island, Australia, July 20-25, 1997
[17] Thompson, P., Compressible fluid dynamics, (1972), McGraw-Hill New York · Zbl 0251.76001
[18] Radovitzky, R.; Ortiz, M., Error estimation and adaptive meshing in strongly nonlinear dynamic problems, Comput. meth. appl. mech. eng., 172, 203, (1999) · Zbl 0957.74058
[19] Love, A.E.H., A treatise on the mathematical theory of elasticity, (1944), Dover Publications New York · Zbl 0063.03651
[20] Young, W., Roark’s formulas for stress and strain, (1989), McGraw-Hill New York
[21] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, vol. 1, (1989), McGraw-Hill New York · Zbl 0991.74002
[22] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, vol. 2, (1991), McGraw-Hill New York · Zbl 0991.74002
[23] Bathe, K., Finite element procedures, (1996), Prentice-Hall Englewood Cliffs, NJ
[24] von Neumann, J.; Richtmyer, R.D., A method for the numerical calculation of hydrodynamic shocks, J. appl. phys., 21, 232, (1950) · Zbl 0037.12002
[25] Benson, D., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. meth. appl. mech. eng., 99, 235, (1992) · Zbl 0763.73052
[26] Wilkins, M.L., Use of artificial viscosity in multidimensional fluid dynamic calculations, J. comput. phys., 36, 281, (1980) · Zbl 0436.76040
[27] Noh, W.F., Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, J. comput. phys., 72, 78, (1978) · Zbl 0619.76091
[28] Caramana, E.J.; Shashkov, M.J.; Whalen, P.P., Formulations of artificial viscosity for multi-dimensional shock wave computations, J. comput. phys., 144, 70, (1988) · Zbl 1392.76041
[29] Osher, S.; Sethian, J.A., Fronts propagating with curvature-dependent speed – algorithms based on hamilton – jacobi formulations, J. comput. phys., 79, 12, (1988) · Zbl 0659.65132
[30] Hoffmann, C.M., Geometric and solid modeling, an introduction, (1989), Morgan Kaufmann Los Altos, CA
[31] S. Mauch, A fast algorithm for computing the closest point and distance transform, SIAM J. Scientific Comput. (in review) (2000) http://www.cacr.caltech.edu/ASAP/onlineresources/publications/cit-asci-tr/c=it-asci-tr077.pdf
[32] Chapra, S.C.; Canale, R.P., Numerical methods for engineers, (1990), McGraw-Hill New York
[33] Caiden, R.; Fedkiw, R.P.; Anderson, C., A numerical method for two-phase flow consisting of separate compressible and incompressible regions, J. comput. phys., 166, 1, (2001) · Zbl 0990.76065
[34] Adalsteinsson, D.; Sethian, J.A., The fast construction of extension velocities in level set methods, J. comput. phys., 148, 2, (1999) · Zbl 0919.65074
[35] Aslam, T.D.; Bdzil, J.B.; Stewart, D.S., Level set methods applied to modeling detonation shock dynamics, J. comput. phys., 126, 390, (1996) · Zbl 0866.76059
[36] Osher, S.; Shu, C.W., Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. comput. phys., 83, 32, (1989) · Zbl 0674.65061
[37] Shu, C.W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. comput. phys., 77, 439, (1988) · Zbl 0653.65072
[38] van Leer, B., Flux-vector splitting for the Euler equations, Lecture notes in physics, 170, 507, (1982)
[39] H.H. Bleich, A. Matthews, J.P. Wright, Step load moving with superseismic velocity on the surface of a half-space of granular material, Technical Report AFWL-TR-65-59, Air Force Weapons Laboratory, 1965
[40] Kolsky, H., Stress waves in solids, (1963), Dover New York · Zbl 0109.43303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.