×

zbMATH — the first resource for mathematics

A ghost-cell immersed boundary method for flow in complex geometry. (English) Zbl 1047.76575
Summary: An efficient ghost-cell immersed boundary method (GCIBM) for simulating turbulent flows in complex geometries is presented. A boundary condition is enforced through a ghost cell method. The reconstruction procedure allows systematic development of numerical schemes for treating the immersed boundary while preserving the overall second-order accuracy of the base solver. Both Dirichlet and Neumann boundary conditions can be treated. The current ghost cell treatment is both suitable for staggered and non-staggered Cartesian grids. The accuracy of the current method is validated using flow past a circular cylinder and large eddy simulation of turbulent flow over a wavy surface. Numerical results are compared with experimental data and boundary-fitted grid results. The method is further extended to an existing ocean model (MITGCM) to simulate geophysical flow over a three-dimensional bump. The method is easily implemented as evidenced by our use of several existing codes.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D99 Incompressible viscous fluids
PDF BibTeX Cite
Full Text: DOI
References:
[1] Adcroft, A.; Hill, C.; Marshall, J., Representation of topography by shaved cells in a height coordinate Ocean model, Mon. weather rev., 125, 9, 2293-2315, (1997)
[2] Almgren, A.S.; Bell, J.B.; Colella, P.; Marthaler, T., A Cartesian grid projection method for the incompressible Euler equations in complex geometries, SIAM J. sci. comput., 18, 5, 1289-1309, (1997) · Zbl 0910.76040
[3] Calhoun, D., A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions, J. comput. phys., 176, 2, 231-275, (2002) · Zbl 1130.76371
[4] Calhoun, D.; LeVeque, R.J., A Cartesian grid finite-volume method for the advection – diffusion equation in irregular geometries, J. comput. phys., 157, 1, 143-180, (2000) · Zbl 0952.65075
[5] Calhoun, R.J.; Street, R.L., Turbulent flow over a wavy surface: neutral case, J. geophys. res., 106, 9277-9293, (2001)
[6] Cui, J.; Patel, V.C.; Lin, C.L., Prediction of turbulent flow over rough surfaces using a force field in large eddy simulation, ASME J. fluid engrg., 125, 1, 2-9, (2003)
[7] A. Dias, S. Majumdar, Numerical computation of flow around a circular cylinder, Technical Report, PS II Report, BITS Pilani, India
[8] Fadlun, E.A.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. comput. phys., 161, 30-60, (2000) · Zbl 0972.76073
[9] Fedkiw, R.P., Coupling an eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. comput. phys., 175, 200-224, (2002) · Zbl 1039.76050
[10] Fedkiw, R.P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. comput. phys., 152, 457-492, (1999) · Zbl 0957.76052
[11] Ferziger, J.H.; Perić, M., Computational methods for fluid dynamics, (2001), Springer Verlag Berlin, Heidelberg · Zbl 0869.76003
[12] Forrer, H.; Jeltsch, R., A higher-order boundary treatment for Cartesian-grid method, J. comput. phys., 140, 259-277, (1998) · Zbl 0936.76041
[13] Franke, R., Scattered data interpolation: tests of some methods, Math. comput., 38, 181-200, (1982) · Zbl 0476.65005
[14] Gibou, F.; Fedkiw, R.P.; Cheng, L.T.; Kang, M., A second-order-accurate symmetric discretization of the Poisson equation on irregular domains, J. comput. phys., 176, 205-227, (2002) · Zbl 0996.65108
[15] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. comput. phys., 105, 354-366, (1993) · Zbl 0768.76049
[16] Golub, G.H.; van Loan, C.F., Matrix computations, (1996), The Johns Hopkins University Press Baltimore · Zbl 0865.65009
[17] Haworth, D.C.; Jansen, K., Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines, Comput. fluids, 29, 493-524, (2000)
[18] Henn, D.; Sykes, I., Large-eddy simulation of flow over wavy surfaces, J. fluid mech., 383, 75-112, (1999) · Zbl 0931.76035
[19] Iaccarino, G.; Verzicco, R., Immersed boundary technique for turbulent flow simulations, Appl. mech. rev., 56, 331-347, (2003)
[20] Jeong, J.; Hussain, F., On the identification of a vortex, J. fluid mech., 285, 69-94, (1995) · Zbl 0847.76007
[21] Johansen, H.; Colella, P., A Cartesian grid embedded boundary method for poisson’s equation on irregular domains, J. comput. phys., 147, 1, 60-85, (1998) · Zbl 0923.65079
[22] Kim, J.; Kim, D.; Choi, H., An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. comput. phys., 171, 132-150, (2001) · Zbl 1057.76039
[23] Kim, J.; Moin, P., Application of a fractional-step method to incompressible navier – stokes equations, J. comput. phys., 59, 308-323, (1985) · Zbl 0582.76038
[24] Kirkpatrick, M.P.; Armfield, S.W.; Kent, J.H., A representation of curved boundaries for the solution of the navier – stokes equations on a staggered three-dimensional Cartesian grid, J. comput. phys., 184, 1, 1-36, (2003) · Zbl 1118.76350
[25] Lai, M.; Peskin, C.S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. comput. phys., 160, 705-719, (2000) · Zbl 0954.76066
[26] Leonard, B.P., A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Comput. methods appl. mech. engrg., 19, 58-98, (1979) · Zbl 0423.76070
[27] LeVeque, R.J.; Oliger, J., Numerical-methods based on additive splittings for hyperbolic partial-differential equations, Math. comp., 40, 469-497, (1983) · Zbl 0516.65075
[28] Liu, X.D.; Fedkiw, R.P.; Kang, M.J., A boundary condition capturing method for poisson’s equation on irregular domains, J. comput. phys., 160, 1, 151-178, (2003) · Zbl 0958.65105
[29] Majumdar, S.; Iaccarino, G.; Durbin, P., RANS solvers with adaptive structured boundary non-conforming grids, (), 353-366
[30] Marshall, J.; Hill, C.; Perelman, L.; Adcroft, A., Hydrostatic; quasi-hydrostatic; and nonhydrostatic Ocean modeling, J. geophys. res., 102, C3, 5733-5752, (1997)
[31] McCorquodale, P.; Colella, P.; Johansen, H., A Cartesian grid embedded boundary method for the heat equation on irregular domains, J. comput. phys., 173, 2, 620-635, (2001) · Zbl 0991.65099
[32] McKenney, A.; Greengard, L.; Mayo, A., A fast Poisson solver for complex geometries, J. comput. phys., 118, 2, 348-355, (1995) · Zbl 0823.65115
[33] Mohd-Yusof, J., Combined immersed boundary/B-spline methods for simulations of flows in complex geometries, (), 317-327
[34] Nakayama, A.; Sakio, K., Simulation of flows over wavy rough boundaries, (), 313-324
[35] Pember, R.B.; Bell, J.B.; Colella, P.; Crutchfield, W.Y.; Welcome, M.L., An adaptive Cartesian grid method for unsteady compressible flow in irregular regions, J. comput. phys., 120, 2, 278-304, (1995) · Zbl 0842.76056
[36] Peskin, C.S., Flow patterns around heart valves: a numerical method, J. comput. phys., 10, 252-271, (1972) · Zbl 0244.92002
[37] Saad, Y., Iterative methods for sparse linear systems, (1996), PWS Publishing Company Boston · Zbl 1002.65042
[38] Saiki, E.M.; Biringen, S., Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, J. comput. phys., 123, 450-465, (1996) · Zbl 0848.76052
[39] Scandura, P.; Vittori, G.; Blondeaux, P., Three-dimensional oscillatory flow over steep ripples, J. fluid mech., 412, 355-378, (2000) · Zbl 0998.76500
[40] Stone, H.L., Iterative solution of implicit approximations of multidimensional partial differential equations, SIAM J. numer. anal., 5, 530-558, (1968) · Zbl 0197.13304
[41] Tseng, Y.H.; Ferziger, J.H., Effects of coastal geometry and the formation of cyclonic/anti-cyclonic eddies on turbulent mixing in upwelling simulation, J. turbulence, 2, 014, (2001) · Zbl 1082.86501
[42] Udaykumar, H.S.; Mittal, R.; Rampunggoon, P.; Khanna, A., A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, J. comput. phys., 174, 345-380, (2001) · Zbl 1106.76428
[43] Verzicco, R.; Iaccarino, G.; Fatica, M.; Orlandi, P., Flow in an impeller stirred tank using an immersed boundary method, (), 251-261
[44] Verzicco, R.; Mohd-Yusof, J.; Orlandi, P.; Haworth, D., Large eddy simulation in complex geometry configurations using boundary body forces, Aiaa j., 38, 427-433, (2000)
[45] Xu, S.J.; Aslam, T.; Stewart, D.S., High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries, Combust. theory model., 1, 1, 113-142, (1997) · Zbl 1046.80505
[46] Ye, T.; Mittal, R.; Udaykumar, H.S.; Shyy, W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. comput. phys., 156, 209-240, (1993) · Zbl 0957.76043
[47] Zang, Y.; Street, R.L.; Koseff, J.R., A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows, Phys. fluids, A5, 3186-3196, (1993) · Zbl 0925.76242
[48] Zang, Y.; Street, R.L.; Koseff, J.R., A non-staggered grid, fractional step method for time-dependent incompressible navier – stokes equations in curvilinear coordinates, J. comput. phys., 114, 18-33, (1994) · Zbl 0809.76069
[49] Zedler, E.A.; Street, R.L., Large-eddy simulation of sediment transport: currents over ripples, J. hydraul. engrg., 127, 444-452, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.