zbMATH — the first resource for mathematics

Norm-based approximation in multicriteria programming. (English) Zbl 1047.90062
Summary: Based on new theoretical results on norms, heuristic algorithms to approximate the nondominated set of multicriteria programs are proposed. By automatically adapting to the problem’s structure and scaling, the approximation is constructed objectively without interaction with the decision maker. As the algorithms extend the results obtained for bicriteria programs, difficulties encountered when dealing with more than two criteria are discussed.

90C29 Multi-objective and goal programming
PDF BibTeX Cite
Full Text: DOI
[1] Kaliszewski, I., Quantitative Pareto analysis by cone separation technique, (1994), Kluwer Academic Dordrecht · Zbl 0839.90101
[2] Steuer, R.E.; Choo, E.U., An interactive weighted Tchebycheff procedure for multiple objective programming, Mathematical programming, 26, 326-344, (1983) · Zbl 0506.90075
[3] Kaliszewski, I., A modified weighted Tchebycheff metric for multiple objective programming, Computers and operations research, 14, 315-323, (1987) · Zbl 0633.90079
[4] Carrizosa, E.; Conce, E.; Pascual, A.; Romero-Morales, D., Closest solutions in ideal-point methods, (), 274-281
[5] Yu, P.L., A class of solutions for group decision problems, Management science, 19, 936-946, (1973) · Zbl 0264.90008
[6] Zeleny, M., Compromise programming, (), 262-301
[7] Wierzbicki, A.P., The use of reference objectives in multiobjective optimization, Lecture notes in economics and mathematical systems, 177, 468-486, (1980)
[8] Steuer, R.E., Multiple criteria optimization: theory, computation, and application, (1986), Wiley New York · Zbl 0663.90085
[9] Schandl, B.; Klamroth, K.; Wiecek, M.M., Norm-based approximation in bicriteria programming, Computational optimization and applications, 20, 23-42, (2001) · Zbl 0983.90081
[10] Polak, E., On the approximation of solutions to multiple criteria decision making problems, (), 271-282
[11] Jahn, J.; Merkel, A., Reference point approximation method for the solution of bicriterial nonlinear optimization problems, Journal of optimization theory and applications, 74, 87-103, (1992) · Zbl 0795.90056
[12] Helbig, S., Approximation of the efficient set by perturbation of the ordering cone, ZOR—methods and models of operations research, 35, 197-220, (1991) · Zbl 0737.90051
[13] Pascoletti, A.; Serafini, P., Scalarizing vector optimization problems, Journal of optimization theory and applications, 42, 499-524, (1984) · Zbl 0505.90072
[14] Kostreva, M.M.; Zheng, Q.; Zhuang, D., A method for approximating solutions of multicriteria nonlinear optimization problems, Optimization methods and software, 5, 209-226, (1995)
[15] Sobol’, I.M.; Levitan, Yu.L., Error estimates for the crude approximation of the trade-off curve, (), 83-92 · Zbl 0898.90115
[16] Statnikov, R.B.; Gvishiani, J.M.; Yemelyanov, S.V., Solution of multicriteria machines design problems on the basis of parameters space investigation, Multicriteria decision-making problems, (1978), Mashinostroyeniye Moscow, (in Russian)
[17] Benson, H.P.; Sayin, S., Towards finding global representations of the efficient set in multiple objective mathematical programming, Naval research logistics, 44, 47-67, (1997) · Zbl 0882.90116
[18] Das, I., An improved technique for choosing parameters for Pareto surface generation using normal-boundary intersection, (), 411-413, Volume 2
[19] Das, I.; Dennis, J., Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM journal on optimization, 8, 631-657, (1998) · Zbl 0911.90287
[20] Fonseca, C.M.; Fleming, P.J., An overview of evolutionary algorithms in multiobjective optimization, Evolutionary computation, 3, 1-16, (1995)
[21] Czyzak, P.; Jaszkiewicz, A., Pareto simulated annealing—A metaheuristic technique for multiple-objective combinatorial optimization, Journal of multi-criteria decision analysis, 7, 34-47, (1998) · Zbl 0904.90146
[22] Ulungu, E.L.; Teghem, J.; Fortemps, P.H.; Tuyttens, D., MOSA method: A tool for solving multiobjective combinatorial optimization problems, Journal of multi-criteria decision analysis, 8, 221-236, (1999) · Zbl 0935.90034
[23] Geoffrion, A.M., Proper efficiency and the theory of vector maximization, Journal of mathematical analysis and applications, 22, 3, 618-630, (1968) · Zbl 0181.22806
[24] Schandl, B.; Klamroth, K.; Wiecek, M.M., Introducing oblique norms into multiple criteria programming, Journal of global optimization, 23, 81-97, (2002) · Zbl 0996.90067
[25] Schandl, B., Norm-based evaluation and approximation in multicriteria programming, (), (15.12. 1999)
[26] Rockafellar, R.T., Convex analysis, (1970), Princeton University Press Princeton, NJ · Zbl 0229.90020
[27] Hiriart-Urruty, J.-B.; Lemaréchal, C., Convex analysis and minimization algorithms I, (1993), Springer-Verlag Berlin
[28] Hiriart-Urruty, J.-B.; Lemaréchal, C., Convex analysis and minimization algorithms II, (1993), Springer-Verlag Berlin
[29] Schandl, B., On some properties of gauges, (), (15.12.1999)
[30] Minkowski, H., ()
[31] Hamacher, H.W.; Klamroth, K., Planar Weber location problems with barriers and block norms, Annals of operations research, 96, 191-208, (2000) · Zbl 0997.90043
[32] Bauer, F.L.; Stoer, J.; Witzgall, C., Absolute and monotonic norms, Numerische Mathematik, 3, 257-264, (1961) · Zbl 0111.01602
[33] Edelsbrunner, H., Algorithms in combinatorial geometry, (1987), Springer-Verlag Berlin · Zbl 0634.52001
[34] Okabe, A.; Boots, B.; Sugihara, K., Spatial tessellations: concepts and applications of Voronoi diagrams, (1992), John Wiley & Sons Chichester · Zbl 0877.52010
[35] Warburton, A., Approximation of Pareto optima in multiple-objective, shortest-path problems, Operations research, 35, 70-79, (1987) · Zbl 0623.90084
[36] Murthy, I.; Her, S.-S., Solving MIN-MAX shortest-path problems on a network, Naval research logistics, 39, 669-683, (1992) · Zbl 0761.90095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.