×

Delay-dependent stability criteria for time-delay chaotic systems via time-delay feedback control. (English) Zbl 1048.37509

Summary: This paper studies delay-dependent stability of time-delay chaotic systems via time-delayed feedback control (DFC). The delay-dependent stability criteria via DFC are derived from the results based on standard feedback control (SFC), the method can be obtained to stabilize the system to an unstable fixed point. A numerical example is discussed to illustrate the advantage of the obtained result.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34K20 Stability theory of functional-differential equations
34K23 Complex (chaotic) behavior of solutions to functional-differential equations
93D15 Stabilization of systems by feedback
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ott, E.; Grebogi, C.; Yorke, J.A., Controlling chaos, Phys. rev. lett., 64, 1196-1199, (1990) · Zbl 0964.37501
[2] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. lett. A, 170, 421-428, (1992)
[3] Stojanovski, T.; Kocarev, L.; Parlitz, U., Driving and synchronizing by chaotic impulses, Phys. rev. E, 43, 9, 782-785, (1996)
[4] Schweizer, J.; Kennedy, M.P., Predictive Poincaré control: a control theory for chaotic systems, Phys. rev. E, 52, 5, 4865-4876, (1995)
[5] Bainov, D.D.; Simeonov, P.S., Systems with impulse effect: stability, theory and applications, (1989), Halsted Press New York · Zbl 0676.34035
[6] Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S., Theory of impulsive differential equations, (1989), World Scientific Singapore · Zbl 0719.34002
[7] Szmoilenko, A.M.; Perestyuk, N.A., Impulsive differential equations, (1995), World Scientific Singapore
[8] Panas, A.I.; Yang, T.; Chua, L.O., Experimental results of impulsive synchronization between two chua’s oscillators, Int. J. bifurcat. chaos, 8, 3, 639-644, (1998) · Zbl 0941.34507
[9] Tang, T., Impulsive control, IEEE trans. autom. control, 44, 5, 1081-1083, (1999) · Zbl 0954.49022
[10] Itoh, M.; Yang, T.; Chua, L.O., Experimental study of impulsive synchronization of chaotic and hyperchaotic circuits, Int. J. bifurcat. chaos, 9, 7, 1393-1424, (1999) · Zbl 0963.34029
[11] Akinyele, O., Cone-valued Lyapunov functions and stability of impulsive control systems, Nonlinear anal., 39, 247-259, (2000) · Zbl 0939.34057
[12] Xie, W.X.; Wen, C.Y.; Li, Z.G., Impulsive control for the stabilization and synchronization of Lorenz systems, Phys. lett. A, 275, 67-72, (2000) · Zbl 1115.93347
[13] Sun, J.T.; Zhang, Y.P.; Wu, Q.D., Impulsive control for the stabilization and synchronization of Lorenz systems, Phys. lett. A, 298, 153-160, (2002) · Zbl 0995.37021
[14] Yang, T., Impulsive control theory, (2001), Spinger-Verlag Berlin
[15] Sun, J.T.; Zhang, Y.P.; Wu, Q.D., Less conservative conditions for asymptotic stability of impulsive control systems, IEEE trans. autom. control, 48, 5, 829-831, (2003) · Zbl 1364.93691
[16] Stark, J.; Hardy, K., Chaos: useful at last?, Science, 301, 1192-1193, (2003)
[17] Sun, J.T.; Zhang, Y.P., Impulsive control of a nuclear spin generator, J. comput. appl. math., 157, 1, 235-242, (2003) · Zbl 1051.93086
[18] Corron NJ. Flexible design via chaos control. 2003 IEEE IMS Workshop, Philadelphia, June, 2003
[19] Sun, J.T.; Zhang, Y.P., Some simple global synchronization criterions for coupled time-varying chaotic systems, Chaos, solitons & fractals, 19, 1, 93-98, (2004) · Zbl 1069.34068
[20] Mackey, M.; Glass, L., Oscillation and chaos in physiological control system, Science, 197, 287-289, (1977) · Zbl 1383.92036
[21] Farmer, J., Chaotic attractors of infinite-dimensional dynamic systems, Physica D, 4, 366-393, (1982) · Zbl 1194.37052
[22] Boe, E.; Chang, H., Transition to chaos from a two-torus in a delayed feedback system, Int. J. bifurcat. chaos, 1, 1, 67-81, (1991) · Zbl 0755.34080
[23] Lu, H.; He, Z., Chaotic behavior in first-order autonomous continuous-time systems with delay, IEEE trans. circuit syst., 43, 700-702, (1996)
[24] Bunner, M.; Meyer, T.; Kittel, A.; Parisi, J., Recovery of the time-evolution equation of time-delay systems from time series, Phys. rev. E, 56, 5, 5083-5089, (1997)
[25] Konishi, K.; Kokame, H., Learning control of time-delay chaotic systems and its applications, Int. J. bifurcat. chaos, 8, 2457-2465, (1998) · Zbl 0940.93036
[26] Chen, G.; Yu, H., On time-delayed feedback control of chaotic systems, IEEE trans. circuit syst., 46, 767-772, (1999) · Zbl 0951.93034
[27] Sun, J.T., Some global synchronization criteria for coupled delay-systems via unidirectional linear error feedback approach, Chaos, solitons & fractals, 19, 4, 789-794, (2004) · Zbl 1135.34341
[28] Chen, G.; Dong, X., From chaos to order: metfodologies, perspectives and applications, (1998), World Scientific Singapore
[29] Chen, G.; Dong, X., On feedback control of chaotic continuous time systems, IEEE trans. circuit syst., 40, 591-601, (1993) · Zbl 0800.93758
[30] Namajunas, A.; Pyragas, K.; Tamasevicius, A., An electronic analogy of the mackey – glass system, Phys. lett. A, 201, 42-46, (1995)
[31] Namajunas, A.; Pyragas, K.; Tamasevicius, A., Stabilization of an unstable steady state in a mackey – glass system, Phys. lett. A, 204, 255-262, (1995)
[32] Bleich, M.; Socolar, J., Stability of periodic orbits controlled by time-delayed feedback, Phys. lett. A, 210, 87-94, (1996)
[33] Nakajima, H., On analytical properties of delayed feedback control of chaos, Phys. lett. A, 232, 207-210, (1997) · Zbl 1053.93509
[34] Just, W.; Bernard, T.; Ostheirer, M.; Reibold, E.; Benner, H., Mechanism of time-delayed feedback control, Phys. rev. lett., 78, 203-296, (1997)
[35] Tian, Y.; Gao, F., Adaptive control of chaotic continuous-time systems with delay, Physica D, 117, 1-12, (1998) · Zbl 0941.93534
[36] Shobukhov, A., Complex dynamic behavior in a model of electro-optic device with time-delayed feedback, Int. J. bifurcat. chaos, 8, 1347-1354, (1998)
[37] Namajunas, A.; Pyragas, K.; Tamasevicius, A., Analog techniques for modeling and controlling the mackey – glass system, Int. J. bifurcat. chaos, 8, 957-962, (1998)
[38] Chen, G.; Lu, J., Bifurcation dynamics in discrete-time delayed-feedback control systems, Int. J. bifurcat. chaos, 9, 287-293, (1999) · Zbl 0967.93511
[39] Guido, H., A robust delay adaptation scheme for pyragas’ chaos control method, Phys. lett. A, 287, 245-256, (2001) · Zbl 0971.93080
[40] Guan, X.P.; Chen, C.L.; Peng, H.P.; Fan, Z.P., Time-delayed feedback control of time-delay chaotic systems, Int. J. bifurcat. chaos, 13, 193-205, (2003) · Zbl 1129.93399
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.