Discovering numeric association rules via evolutionary algorithm. (English) Zbl 1048.68829

Chen, Ming-Syan (ed.) et al., Advances in knowledge discovery and data mining. 6th Pacific-Asia conference, PAKDD 2002, Taipei, Taiwan, May 6–8, 2002. Proceedings. Berlin: Springer (ISBN 3-540-43704-5). Lect. Notes Comput. Sci. 2336, 40-51 (2002).
Summary: Association rules are one of the most used tools to discover relationships among attributes in a database. Nowadays, there are many efficient techniques to obtain these rules, although most of them require that the values of the attributes be discrete. To solve this problem, these techniques discretize the numeric attributes, but this implies a loss of information. In a general way, these techniques work in two phases: in the first one they try to find the sets of attributes that are, with a determined frequency, within the database (frequent itemsets), and in the second one, they extract the association rules departing from these sets. In this paper we present a technique to find the frequent itemsets in numeric databases without needing to discretize the attributes. We use an evolutionary algorithm to find the intervals of each attribute that conforms a frequent itemset. The evaluation function itself will be the one that decide the amplitude of these intervals. Finally, we evaluate the tool with synthetic and real databases to check the efficiency of our algorithm.
For the entire collection see [Zbl 0992.68521].


68U99 Computing methodologies and applications
68P15 Database theory
68P20 Information storage and retrieval of data
Full Text: Link