zbMATH — the first resource for mathematics

An adaptive chaos synchronization scheme applied to secure communication. (English) Zbl 1048.93508
Summary: This paper deals with the problem of synchronization of a class of continuous-time chaotic systems using the drive-response concept. An adaptive observer-based response system is designed to synchronize with a given chaotic drive system whose dynamical model is subjected to unknown parameters. Using the Lyapunov stability theory an adaptation law is derived to estimate the unknown parameters. We show that synchronization is achieved asymptotically. The approach is next applied to chaos-based secure communication. To demonstrate the efficiency of the proposed scheme numerical simulations are presented.

93C95 Application models in control theory
37N35 Dynamical systems in control
Full Text: DOI
[1] Pecora, L.M.; Carroll, T.L., Driving systems with chaotic signals, Phys. rev. A, 44, 4, 2374-2383, (1991)
[2] Ogorzalek, M., Taming chaos–part-I: synchronization, IEEE trans. circ. syst. I, 40, 10, 693-699, (1993) · Zbl 0850.93353
[3] Morgül, Ö.; Feki, M., On the synchronization of chaotic systems by using occasional coupling, Phys. rev. E, 55, 5, 5004-5009, (1997)
[4] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.; Zhou, C., The synchronization of chaotic systems, Phys. rep., 366, 1-101, (2002) · Zbl 0995.37022
[5] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Phys. rev. lett., 64, 8, 821-824, (1990) · Zbl 0938.37019
[6] Chua, L.; Itoh, M.; Kocarev, L.; Eckert, K., Chaos synchronization in chua’s circuit, J. circ. syst. comput., 3, 1, 93-108, (1993)
[7] Hasler M. Synchronization principles and applications. In: IEEE Int. Symp. Circuits and Systems, New York, 1994. p. 314-27 [Chapter 6.2]
[8] Feldmann U, Hasler M, Schwarz W. Communication by chaotic signals: the inverse system approach. In: IEEE Int Symp Circuits and Systems, Vol. 1. Seattle, 1995. p. 3-6 · Zbl 0902.94005
[9] Morgül, Ö.; Solak, E., Observer based synchronization of chaotic signals, Phys. rev. E, 54, 5, 4803-4811, (1996)
[10] Morgül, Ö.; Solak, E., On the synchronization of chaotic systems by using state observers, Int. J. bifurcat. chaos, 7, 6, 1307-1322, (1997) · Zbl 0967.93509
[11] Nijmeijer, H.; Mareels, I.M., An observer looks at synchronization, IEEE trans. circ. syst. I, 44, 10, 882-890, (1997)
[12] Feng, L.; Yong, R.; Shan, X.; Qiu, Z., A linear feedback synchronization theorem for a class of chaotic systems, Chaos, solitons & fractals, 13, 4, 723-730, (2002) · Zbl 1032.34045
[13] Feki, M.; Robert, B., Observer-based chaotic synchronization in the presence of unknown inputs, Chaos, solitons & fractals, 15, 831-840, (2003) · Zbl 1035.34024
[14] Feki M. Observer-based exact synchronization of ideal and mismatched chaotic systems. Phys Lett A, submitted for publication · Zbl 1010.37016
[15] Liao, T.-L.; Tsai, S.-H., Adaptive synchronization of chaotic systems and its application to secure communications, Chaos, solitons & fractals, 11, 9, 1387-1396, (2000) · Zbl 0967.93059
[16] Andrievsky, B., Adaptive synchronization methods for signal transmission on chaotic carrier, Math. comput. simul., 58, 285-293, (2002) · Zbl 0995.65133
[17] Marino, R.; Tomei, P., Nonlinear control design–geometric, adaptive, robust, (1995), Prentice-Hall Englewood Cliffs, NJ · Zbl 0833.93003
[18] Khalil, H.K., Nonlinear systems, (1992), Macmillan New York · Zbl 0626.34052
[19] Besançon, G., Remarks on nonlinear adaptive observer design, Syst. control lett., 41, 271-280, (2000) · Zbl 0980.93009
[20] Kennedy, M.P., Bifurcation and chaos, (), 1089-1163, [Chapter VII-38]
[21] Cuomo, K.M.; Oppenheim, A.V.; Strogatz, S.H., Synchronization of lorenzed-based chaotic circuits with applications to communications, IEEE trans. circ. syst. II, 40, 10, 626-633, (1993)
[22] Dedieu, H.; Kennedy, M.P.; Hasler, M., Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing chua’s circuit, IEEE trans. circ. syst. II, 40, 10, 634-642, (1993)
[23] Morgül, Ö.; Feki, M., A chaotic masking scheme by using synchronized chaotic systems, Phys. lett. A, 251, 3, 169-176, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.