zbMATH — the first resource for mathematics

A new methodology for anisotropic mesh refinement based upon error gradients. (English) Zbl 1050.65122
Summary: We introduce a new strategy for controlling the use of anisotropic mesh refinement based upon the gradients of an a posteriori approximation of the error in a computed finite element solution. The efficiency of this strategy is demonstrated using a simple anisotropic mesh adaption algorithm and the quality of a number of potential a posteriori error estimates is considered.

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI
[1] Ainsworth, M; Babuška, I, Reliable and robust a posteriori error estimation for singularly perturbed reaction – diffusion problems, SIAM J. numer. anal., 36, 2, 331-353, (1999) · Zbl 0948.65114
[2] Ainsworth, M; Oden, J.T, A posteriori error estimation in finite element analysis, Comput. methods appl. mech. engrg., 142, 1-2, 1-88, (1997) · Zbl 0895.76040
[3] Ait-Ali-Yahia, D; Habashi, W.G; Tam, A; Vallet, M.-G; Fortin, M, A directionally adaptive methodology using an edge-based error estimate on quadrilateral grids, Internat. J. numer. methods fluids, 23, 673-690, (1996) · Zbl 0884.76036
[4] T. Apel, Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics, Teubner, Stuttgart, 1999, Habilitationsschrift · Zbl 0934.65121
[5] Apel, T; Milde, F, Comparison of several mesh refinement strategies near edges, Comm. numer. methods engrg., 12, 373-381, (1996) · Zbl 0865.65086
[6] Apel, T; Mücke, R; Whiteman, J.R, Incorporation of a-priori mesh grading into a-posteriori adaptive mesh refinement, (), 79-92, shortened version of Report 93/9, BICOM Institute of Computational Mathematics, 1993
[7] Apel, T; Schöberl, J, Multigrid methods for anisotropic edge refinement, SIAM J. numer. anal., 40, 1993-2006, (2002) · Zbl 1036.65106
[8] Bank, R.E; Smith, R.K, Mesh smoothing using a posteriori error estimates, SIAM J. numer. anal., 34, 979-997, (1997) · Zbl 0873.65092
[9] Bank, R.E; Weiser, A, Some a posteriori error estimates for elliptic partial differential, Math. comp., 44, 283-301, (1985) · Zbl 0569.65079
[10] Beinert, R; Kröner, D, Finite volume methods with local mesh alignment in 2-D, (), 38-53 · Zbl 0808.65097
[11] Brackbill, J.U, An adaptive grid with directional control, J. comput. phys., 108, 38-50, (1993) · Zbl 0832.65132
[12] Buscaglia, G.C; Dari, E.A, Anisotropic mesh optimization and its application in adaptivity, Internat. J. numer. methods engrg., 40, 22, 4119-4136, (1997) · Zbl 0899.76264
[13] Castro-Dı́az, M.J; Hecht, F; Mohammadi, B, New progress in anisotropic grid adaption for inviscid and viscous flow simulations, (), 73-85, also Report 2671 at INRIA
[14] D’Azevedo, E.F; Simpson, R.B, On optimal triangular meshes for minimizing the gradient error, Numer. math., 59, 321-348, (1991) · Zbl 0724.65006
[15] Dobrowolski, M; Gräf, S; Pflaum, C, On a posteriori error estimators in the finite element method on anisotropic meshes, Electronic trans. numer. anal., 8, 36-45, (1999) · Zbl 0934.65122
[16] Dolejšı́, V, Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes, Comput. vis. sci., 1, 3, 165-178, (1998) · Zbl 0917.68214
[17] Dörfler, W, A convergent adaptive algorithm for Poisson’s equation, SIAM J. numer. anal., 33, 1106-1124, (1996) · Zbl 0854.65090
[18] Iliescu, T, A 3D flow-aligning algorithm for convection-diffusion problems, Appl. math. lett., 12, 4, 67-70, (1999) · Zbl 0939.65124
[19] Kornhuber, R; Roitzsch, R, On adaptive grid refinement in the presence of internal and boundary layers, IMPACT comput. sci. engrg., 2, 40-72, (1990)
[20] G. Kunert, A Posteriori Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes, Ph.D. Thesis, TU Chemnitz, 1999, Logos, Berlin, 1999 · Zbl 0919.65066
[21] Kunert, G, Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes, Math. model. numer. anal., 35, 1079-1109, (2001) · Zbl 1041.65072
[22] Kunert, G, A note on the energy norm for a singularly perturbed model problem, Computing, 69, 265-272, (2002) · Zbl 1239.65055
[23] Madden, N; Stynes, M, Efficient generation of oriented meshes for solving convection – diffusion problems, Internat. J. numer. methods engrg., 40, 565-576, (1997)
[24] A. Meyer, The adaptive finite element method—can we solve arbitrarily accurate? Preprint SFB393/01-30, TU Chemnitz, 2001
[25] P. Morin, R.H. Nochetto, K. Siebert, Data oscillation and convergence of adaptive FEM, Preprint 17/1999, Albert-Ludwigs-Universität Freiburg, Mathematische Fakulät, 1999 · Zbl 0970.65113
[26] Peraire, J; Vahdati, M; Morgan, K; Zienkiewicz, O.C, Adaptive remeshing for compressible flow computation, J. comput. phys., 72, 449-466, (1987) · Zbl 0631.76085
[27] Rachowicz, W, An anisotropic h-type mesh refinement strategy, Comput. methods appl. mech. engrg., 109, 169-181, (1993) · Zbl 0842.65078
[28] Rank, E; Schweingruber, M; Sommer, M, Adaptive mesh generation and transformation of triangular to quadrilateral meshes, Comm. numer. methods engrg., 9, 121-129, (1993) · Zbl 0782.65141
[29] Rick, W; Greza, H; Koschel, W, FCT-solution on adapted unstructured meshes for compressible high speed flow computations, (), 334-438
[30] Siebert, K.G, An a posteriori error estimator for anisotropic refinement, Numer. math., 73, 3, 373-398, (1996) · Zbl 0873.65098
[31] Simpson, R.B, Anisotropic mesh transformation and optimal error control, Appl. numer. math., 14, 183-198, (1994) · Zbl 0823.65117
[32] Skalický, T; Roos, H.-G, Anisotropic mesh refinement for problems with internal and boundary layers, Internat. J. numer. methods engrg., 46, 1933-1953, (1999) · Zbl 0965.76047
[33] Zienkiewicz, O.C; Wu, J, Automatic directional refinement in adaptive analysis of compressible flows, Internat. J. numer. methods engrg., 37, 2189-2210, (1994) · Zbl 0810.76045
[34] Zienkiewicz, O.C; Zhu, J.Z, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. numer. methods engrg., 24, 337-357, (1987) · Zbl 0602.73063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.