×

Transport properties, Lyapunov exponents, and entropy per unit time. (English) Zbl 1050.82547

Summary: For dynamical systems of large spatial extension giving rise to transport phenomena, like the Lorentz gas, we establish a relationship between the transport coefficient and the difference between the positive Lyapunov exponent and the Kolmogorov-Sinai entropy per unit time, characterizing the fractal and chaotic repeller of trapped trajectories. Consequences for nonequilibrium statistical mechanics are discussed.

MSC:

82C70 Transport processes in time-dependent statistical mechanics
37A60 Dynamical aspects of statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] , Rev. Mod. Phys. 57 pp 617– (1985)
[2] , Phys. Rev. A 38 pp 427– (1988)
[3] , Physica (Amsterdam) 13D pp 55– (1984)
[4] , Phys. Rev. Lett. 62 pp 233– (1989)
[5] , Phys. Rev. Lett. 64 pp 2339– (1990)
[6] , Phys. Rev. A 40 pp 6130– (1989)
[7] , Phys. Rev. A 36 pp 1374– (1987)
[8] , Rev. Mod. Phys. 53 pp 569– (1980)
[9] , Rev. Mod. Phys. 54 pp 195– (1982)
[10] , Phys. Rev. Lett. 50 pp 1959– (1983)
[11] , J. Stat. Phys. 32 pp 555– (1983)
[12] , Commun. Math. Phys. 78 pp 247– (1980)
[13] , Phys. Rev. Lett. 48 pp 7– (1982)
[14] , Phys. Rev. A 26 pp 504– (1982)
[15] , in: Dynamical Systems, Theory and Applications (1975)
[16] , Commun. Math. Phys. 65 pp 295– (1979)
[17] , J. Chem. Phys. 90 pp 2225– (1989)
[18] , J. Chem. Phys. 90 pp 2242– (1989)
[19] , J. Chem. Phys. 90 pp 2255– (1989)
[20] , J. Phys. A 20 pp 5971– (1987)
[21] , Proc. Natl. Acad. Sci. U.S.A. 81 pp 1276– (1984)
[22] , in: The Fractal Geometry of Nature (1982)
[23] , Physica (Amsterdam) 17D pp 75– (1985)
[24] , Bol. Soc. Bras. Mat. 9 pp 83– (1978)
[25] , J. Chem. Phys. 84 pp 2649– (1986)
[26] , J. Phys. A 19 pp L829– (1986)
[27] , J. Phys. A 20 pp 3607– (1987)
[28] , J. Phys. A 22 pp 2925– (1989)
[29] , Physica (Amsterdam) 33D pp 89– (1988)
[30] , Physica (Amsterdam) 33D pp 132– (1988)
[31] , Physica (Amsterdam) 35D pp 34– (1989)
[32] , Phys. Rev. Lett. 63 pp 919– (1989)
[33] , Phys. Rev. Lett. 64 pp 1617– (1990)
[34] , Phys. Lett. A 145 pp 93– (1990)
[35] , Ergod. Theory Dynam. Syst. 2 pp 109– (1982)
[36] , in: An Introduction to Probability Theory and Its Applications (1971)
[37] , J. Stat. Phys. 12 pp 217– (1975)
[38] , in: Stochastic Processes in Physics and Chemistry (1981) · Zbl 0511.60038
[39] , J. Stat. Phys. 42 pp 3– (1986)
[40] , in: Equilibrium and Nonequilibrium Statistical Mechanics (1975) · Zbl 0984.82500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.