Adaptive control and synchronization of Lorenz systems. (English) Zbl 1051.93514

Summary: This study addresses the adaptive control and synchronization problems of Lorenz systems with unknown system parameters. Based on the Lyapunov stability theory, an adaptive control law with single-state variable feedback is derived such that the trajectory of the Lorenz system is globally stabilized to an equilibrium point of the uncontrolled system. In addition, the adaptive control law is also applied to achieve the state synchronization of two identical Lorenz systems. Numerical results demonstrate the effectiveness of the proposed control scheme.


93C40 Adaptive control/observation systems
37N35 Dynamical systems in control
34C99 Qualitative theory for ordinary differential equations
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
Full Text: DOI


[1] G. Chen, Control and Synchronization of Chaos, a Bibliography, Dept. of Elect. Eng., Univ. Houston, TX, available via ftp:uhoop.egr.uh.edu/pub/TeX/xhaos.tex (login name and password both “anonymous”), 1997.
[2] Pecora, L.M.; Carroll, T.L., Synchronization in chaotic systems, Phys. rev. lett., 64, 8, 821-824, (1990) · Zbl 0938.37019
[3] Carroll, T.L.; Perora, L.M., Synchronizing a chaotic systems, IEEE trans. circuits systems, 38, 453-456, (1991)
[4] Ogorzalek, M.J., Taming chaos-part I: synchronization, IEEE trans. circuits systems, 40, 693-699, (1993) · Zbl 0850.93353
[5] Chen, G.; Dong, X., On feedback control of chaotic continuous-time systems, IEEE trans. circuits systems, 40, 9, 591-601, (1993) · Zbl 0800.93758
[6] Chen, G.; Dong, X., Controlling Chua’s circuits, J. circuits systems comput., 3, 1, 139-149, (1993)
[7] Yu, X., Controlling Lorenz chaos, Int. J. syst. sci., 27, 4, 355-359, (1996) · Zbl 0853.93028
[8] Ott, E.; Grebogi, C.; Yorke, J.A., Controlling chaos, Phys. rev. lett., 64, 11, 1196-1199, (1990) · Zbl 0964.37501
[9] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. lett. A, 170, 421-428, (1992)
[10] Dressler, U.; Nitsche, G., Controlling chaos using time delay coordinates, Phys. rev. lett., 68, 1, 1-4, (1992)
[11] Wu, C.W.; Chua, L.O., A unified framework for synchronization and control of dynamical systems, Int. J. bifurcation chaos, 4, 4, 979-998, (1994) · Zbl 0875.93445
[12] Cuomo, K.M., Synthesizing self-synchronizing chaotic array, Int. J. bifurcation chaos, 4, 3, 727-737, (1994) · Zbl 1053.37511
[13] Kapitaniak, T., Continuous control and synchronization in chaotic systems, Chaos, solitons fractals, 6, 3, 237-244, (1995) · Zbl 0976.93504
[14] Oketami, N.; Ushio, T.; Hirai, K., Decentralized control of chaos in nonlinear networks, Phys. lett. A, 198, 327-332, (1995) · Zbl 1020.93502
[15] Bernardo, M.D., An adaptive approach to the control and synchronization of continuous-time chaotic systems, Int. J. bifurcation chaos, 6, 3, 557-568, (1996) · Zbl 0900.70413
[16] Wu, C.; Yang, T.; Chua, L.O., On adaptive synchronization and control of nonlinear dynamical systems, Int. J. bifurcation chaos, 6, 3, 455-472, (1996)
[17] Zeng, Y.; Singh, S.N., Adaptive control of chaos in Lorenz systems, Dynamics control, 7, 143-154, (1996) · Zbl 0875.93191
[18] Cuomo, K.M.; Oppenheim, A.V., Circuit implementation of synchronizing chaos with applications to communications, Phys. rev. lett., 71, 1, 65-68, (1993)
[19] P.A. Ioannou, J. Sun, Robust Adaptive Control, Prentice-Hall, Engle Wood Cliffs, NJ, 1996. · Zbl 0839.93002
[20] Wang, Y.; Singer, J.; Bau, H., Controlling chaos in a thermal convection loop, J. fluid mech., 237, 479-498, (1992)
[21] Chen, Y.H.; Chou, M.Y., Continuous feedback approach for controlling chaos, Phys. rev. E, 50, 3, 2331-2334, (1994)
[22] C. Sparrow, The Lorenz Equations: Bifurcation, Chaos and Strange Attractors, Springer, New York, 1982. · Zbl 0504.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.