×

zbMATH — the first resource for mathematics

The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. (English) Zbl 1052.35143
Summary: The \(sn\)- and \(cn\)-function methods for finding nonsingular periodic-wave solutions to nonlinear evolution equations are described in a form suitable for automation, where \(sn\) and \(cn\) are the elliptic Jacobi snoidal and cnoidal functions, respectively. Some new solutions are presented.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
33E05 Elliptic functions and integrals
35B10 Periodic solutions to PDEs
Keywords:
automation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Liu, S.; Fu, Z.; Liu, S.; Zhao, Q., Phys. lett. A, 289, 69, (2001)
[2] Fu, Z.; Liu, S.; Liu, S.; Zhao, Q., Phys. lett. A, 290, 72, (2001)
[3] Parkes, E.J.; Duffy, B.R., Comp. phys. commun., 98, 288, (1996)
[4] Duffy, B.R.; Parkes, E.J., Phys. lett. A, 214, 271, (1996) · Zbl 0972.35528
[5] Parkes, E.J.; Zhu, Z.; Duffy, B.R.; Huang, H.C., Phys. lett. A, 248, 219, (1998)
[6] Abramowitz, M.; Stegun, I.A., Handbook of mathematical functions, (1972), Dover New York · Zbl 0515.33001
[7] Yamamoto, Y.; Takizawa, E.I., J. phys. soc. jpn., 50, 1055, (1981)
[8] Kano, K.; Nakayama, T., J. phys. soc. jpn., 50, 361, (1981)
[9] Yamamoto, Y.; Takizawa, E.I., J. phys. soc. jpn., 50, 1421, (1981)
[10] Krishnan, E.V., J. phys. soc. jpn., 53, 947, (1984)
[11] Whitham, G.B., Linear and nonlinear waves, (1974), Wiley New York · Zbl 0373.76001
[12] Porubov, A.V., J. phys. A, 26, L797, (1993)
[13] Aspe, H.; Depassier, M.C., Phys. rev. A, 41, 3125, (1990)
[14] Kawahara, T., J. phys. soc. jpn., 33, 260, (1972)
[15] Dai, X.; Dai, J., Phys. lett. A, 142, 367, (1989)
[16] Ito, M., J. phys. soc. jpn., 49, 771, (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.