×

zbMATH — the first resource for mathematics

Coherent-state propagator of two coupled generalized time-dependent parametric oscillators. (English) Zbl 1052.81537
Summary: We have derived the coherent-state propagator of a pair of coupled generalized time-dependent parametric oscillators using the Lie algebraic approach. The results are for the most general pair of coupled time-dependent oscillators, and thus will be useful for future studies in quantum optics as well as in atomic and molecular physics.

MSC:
81R30 Coherent states
81V80 Quantum optics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wei, J.; Norman, E., J. math. phys., 4, 575, (1963)
[2] Lo, C.F., Phys. rev. A, 47, 115, (1993)
[3] Lo, C.F., Europhys. lett., 24, 319, (1993)
[4] Lo, C.F.; Wong, Y.J., Europhys. lett., 32, 193, (1995)
[5] Lee, T.D., Phys. rev., 95, 1329, (1954)
[6] Schweber, S.S., An introduction to relativistic quantum field theory, (1961), Row-Peterson Elmsford, NY · Zbl 0111.43102
[7] Bogoliubov, N.N., Nuovo cimento, 7, 843, (1958)
[8] Fetter, A.L.; Welecka, J.D., Quantum theory of many particle systems, (1971), McGraw-Hill New York
[9] Tinkham, M., Introduction to superconductivity, (1975), Krieger Malabar, FL
[10] Kim, Y.S.; Noz, M.E., Phase space picture of quantum mechanics, (1991), World Scientific Singapore
[11] van Dam, H.; Ng, Y.J.; Biedenharn, L.C., Phys. lett. B, 158, 227, (1985)
[12] Kim, Y.S.; Noz, M.E., Theory and applications of the Poincaré group, (1986), Reidel Dordrecht
[13] Kim, Y.S., Phys. rev. lett., 63, 348, (1989)
[14] Iachello, F.; Oss, S., Phys. rev. lett., 66, 2976, (1991)
[15] Han, D.; Kim, Y.S.; Noz, M.E., Phys. rev. A, 41, 6233, (1990)
[16] Yuen, H.P., Phys. rev. A, 13, 2226, (1976)
[17] Caves, C.M.; Schumaker, B.L.; Schumaker, B.L.; Caves, C.M., Phys. rev. A, Phys. rev. A, 31, 3093, (1985)
[18] Schumaker, B.L., Phys. rep., 135, 317, (1986)
[19] Yurke, B.; McCall, S.; Klauder, J.R., Phys. rev. A, 33, 4033, (1986)
[20] Louisell, W.H., Quantum statistical properties of radiation, (1973), Wiley New York · Zbl 0133.45301
[21] Weyl, H.; Cartier, P., (), Algebraic groups and discontinuous sub-groups
[22] Lo, C.F., Phys. rev. A, 45, 5262, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.