×

zbMATH — the first resource for mathematics

Global exponential stability of reaction-diffusion recurrent neural networks with time-varying delays. (English) Zbl 1052.82023
Summary: Employing general Halanay inequality, we analyze the global exponential stability of a class of reaction-diffusion recurrent neural networks with time-varying delays. Several new sufficient conditions are obtained to ensure existence, uniqueness and global exponential stability of the equilibrium point of delayed reaction-diffusion recurrent neural networks. The results extend and improve the earlier publications. In addition, an example is given to show the effectiveness of the obtained result.

MSC:
82C32 Neural nets applied to problems in time-dependent statistical mechanics
35K57 Reaction-diffusion equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chua, L.O.; Yang, L., IEEE trans. circuits syst., 35, 10, 1257, (1988)
[2] Chua, L.O.; Yang, L., IEEE trans. circuits syst., 35, 10, 1273, (1988)
[3] Roska, T.; Chua, L.O., Int. J. circuit theory appl., 20, 469, (1992)
[4] Roska, T.; Wu, C.W.; Chua, L.O., IEEE trans. circuits syst. part I, 40, 4, 270, (1993)
[5] Roska, T.; Wu, C.W.; Balsi, M.; Chua, L.O., IEEE trans. circuits syst. part I, 39, 6, 487, (1992)
[6] Gilli, M., IEEE trans. circuits syst. part I, 41, 518, (1994)
[7] Cao, J.; Zhou, D., Neural networks, 11, 9, 1601, (1998)
[8] Arik, S.; Tavsanoglu, V., IEEE trans. circuits syst. part I, 45, 2, 168, (1998)
[9] Cao, J., Phys. rev. E, 59, 5, 5940, (1999)
[10] Liao, X.X., Sci. China (series A), 24, 10, 1037, (1994), (in Chinese)
[11] Liao, X.X.; Fu, Y.L.; Gao, J.; Zhao, Z.Q., Acta electron. sinica, 28, 78, (2000)
[12] Liao, X.X.; Yang, S.Z.; Cheng, S.J.; Shen, Y., Sci. China (series E), 32, 1, 87, (2002)
[13] Huang, H.; Cao, J.; Wang, J., Phys. lett. A, 298, 393, (2002)
[14] Cao, J., Sci. China (series E), 43, 3, 328, (2000)
[15] Liao, X.X., Theory, methods and applications of stability, (1999), Huazhong University of Science and Technology Press Wuhan
[16] Halanay, A., Differential equation: stability oscillations time-lags, (1966), Academic Press New York · Zbl 0144.08701
[17] Cao, J., Int. J. systems sci., 31, 10, 1313, (2000)
[18] Sun, C.; Zhang, K.; Fei, S.; Feng, C., Phys. lett. A, 298, 122, (2002)
[19] Cao, J.; Tao, Q., J. comput. system sci., 62, 3, 528, (2001)
[20] Zhang, J.; Jin, X.S., Neural networks, 13, 745, (2000)
[21] Cao, J.; Tao, Q., J. comput. system sci., 60, 1, 179, (2000)
[22] Berman, A.; Plemmons, R.J., Nonnegative matrices in the mathematical science, (1979), Academic Press New York
[23] Cao, J., Phys. lett. A, 307, 136, (2003)
[24] S. Arik, V. Tavsanoglu, Global stability of CNNs with delays, in: Proc. IEEE Fourth International Workshop on CNNs and Their Applications, Seville, 1996, p. 187 · Zbl 0997.90095
[25] He, Q.M.; Kang, L.S., Neural parallel sci. comput., 2, 165, (1994)
[26] Carpenter, G.A., J. differential equations, 23, 3, 355, (1977)
[27] Evans, J.W., Indiana univ. math. J., 22, 1, 75, (1972)
[28] Liao, X.X.; Li, J., Nonlinear analysis, 28, 10, 1751, (1997)
[29] Hastings, A., J. math. biol., 6, 163, (1978)
[30] Rothe, F., J. math. biol., 3, 319, (1976)
[31] Cao, J.; Wang, J., IEEE trans. circuits syst. I, 50, 1, 34, (2003)
[32] Cao, J., Int. J. systems sci., 32, 2, 233, (2001)
[33] Zhang, J., IEEE trans. circuits syst. I, 50, 2, 288, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.