Zhang, Guang; Cheng, Sui Sun Positive periodic solutions for discrete population models. (English) Zbl 1053.39027 Nonlinear Funct. Anal. Appl. 8, No. 3, 335-344 (2003). The authors study delay discrete population models of the form \[ x(n+1)=a(n)x(n)+\lambda h(n)f(x(n-\tau(n))), \;n\in \mathbb{Z}, \tag{E} \] where \(\{a(n)\}_{n\in \mathbb{Z}}\) and \(\{h(n)\}_{n\in \mathbb{Z}}\) are positive \(\omega\)-periodic sequences, \(\{\tau(n)\}_{n\in \mathbb{Z}}\) is an integer valued \(\omega\)-periodic sequence and \(\lambda\) is a positive parameter. By using Krasnosel’skij’s fixed point theorem, some existence criteria are established for the periodic solutions of the equation (E). Reviewer: Wei Nian Li (Shanghai) Cited in 3 Documents MSC: 39A11 Stability of difference equations (MSC2000) 92D25 Population dynamics (general) Keywords:difference equation; periodic solution; delay discrete population models; Krasnosel’skij’s fixed point theorem PDF BibTeX XML Cite \textit{G. Zhang} and \textit{S. S. Cheng}, Nonlinear Funct. Anal. Appl. 8, No. 3, 335--344 (2003; Zbl 1053.39027) OpenURL