×

Self-adaptive projection algorithms for general variational inequalities. (English) Zbl 1053.65048

Projection algorithms are applied to solve variational inequalities in Hilbert spaces. Basic iteration maps are combined to several more complex algorithms. Finally the convergence behavior of these modified methods is studied.

MSC:

65K10 Numerical optimization and variational techniques
49J40 Variational inequalities
49M15 Newton-type methods
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Noor, M.A., General variational inequalities, Appl. math. lett., 1, 119-121, (1988)
[2] Bertsekas, D.P.; Tsitsiklis, J., Parallel and distributed computation: numerical methods, (1989), Prentice-Hall Englewood Cliffs, NJ · Zbl 0743.65107
[3] Giannessi, F.; Maugeri, A., Variational inequalities and network equilibrium problems, (1995), Plenum Press New York · Zbl 0834.00044
[4] Kinderlehrer, D.; Stampacchia, G., An introduction to variational inequalities and their applications, (2000), SIAM Philadelphia, PA · Zbl 0988.49003
[5] Aslam Noor, M., Some recent advances in variational inequalities, part I, basic concepts, New Zealand J. math., 26, 53-80, (1997) · Zbl 0886.49004
[6] Noor, M.A., Some recent advances in variational inequalities, part II, other concepts, New Zealand J. math., 26, 229-255, (1997) · Zbl 0889.49006
[7] Patriksson, M., Nonlinear programming and variational inequalities: A unified approach, (1998), Kluwer Academic Publishers Dordrecht, Holland
[8] Glowinski, R.; Le Tallec, P., Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, (1989), SIAM Philadelphia, PA · Zbl 0698.73001
[9] Noor, M.A.; Noor, K.I.; Rassias, T.M., Some aspects of variational inequalities, J. comput. appl. math., 47, 285-312, (1993) · Zbl 0788.65074
[10] Haugruge, S.; Nguyen, V.H.; Strodiot, J.J., Convergence analysis and applications of the glowinski – le tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. optim. theory appl., 97, 645-673, (1998) · Zbl 0908.90209
[11] Giannessi, F.; Maugeri, A.; Pardalos, P.M., Equilibrium problems: nonsmooth optimization and variational inequality models, (2001), Kluwer Academic Publishers Dordrecht, Holland · Zbl 0979.00025
[12] He, B.S.; Liao, L.Z., Improvement of some projection methods for monotone nonlinear variational inequalities, J. optim. theory appl., 112, 111-128, (2002) · Zbl 1025.65036
[13] Noor, M.A., Projection-splitting methods for general variational inequalities, J. comput. anal. appl., 4, 47-61, (2002) · Zbl 1039.49010
[14] Noor, M.A., Splitting methods for general pseudomonotone mixed variational inequalities, J. global optim., 18, 75-89, (2000) · Zbl 0984.49005
[15] Noor, M.A., New extragradient-type methods for general variational inequalities, J. math. anal. appl., 277, 379-395, (2003) · Zbl 1033.49015
[16] Luc, D.T.; Aslam Noor, M., Local uniqueness of solutions of general variational inequalities, J. optim. theory appl., 117, 103-119, (2003) · Zbl 1030.49005
[17] Noor, M.A., Modified resolvent splitting algorithms for general mixed variational inequalities, J. comput. appl. math., 135, 111-124, (2001) · Zbl 0997.65091
[18] Noor, M.A., New approximation schemes for general variational inequalities, J. math. anal. appl., 251, 217-229, (2000) · Zbl 0964.49007
[19] Xiu, N.; Zhang, J.; Noor, M.A., Tangent projection equations and general variational inequalities, J. math. anal. appl., 258, 755-762, (2001) · Zbl 1008.49010
[20] Noor, M.A., Operator-splitting methods for general mixed variational inequalities, J. inequal. pure appl. math., 3, 5, 1-9, (2002) · Zbl 1039.49008
[21] Wang, Y.J.; Xiu, N.H.; Wang, C.Y., A new version of extragradient projection method for variational inequality problems, Comput. math. appl., 42, 969-979, (2001) · Zbl 0993.49005
[22] Xiu, N.H.; Zhang, J.Z., Global projection-type error bounds for general variational inequalities, J. optim. theory appl., 112, 213-228, (2002) · Zbl 1005.49004
[23] Han, D.; Lo, H.K., Two new self-adaptive projection methods for variational inequality problems, Comput. math. appl., 43, 1529-1547, (2002) · Zbl 1012.65064
[24] Noor, M.A.; Rassias, T.M., A class of projection methods for general variational inequalities, J. math. anal. appl., 268, 334-343, (2002) · Zbl 1038.49017
[25] Solodov, M.V.; Tseng, P., Modified projection type methods for monotone variational inequalities, SIAM J. control optim., 34, 1814-1830, (1996) · Zbl 0866.49018
[26] Tseng, P., A modified forward – backward splitting method for maximal monotone mappings, SIAM J. control optim., 38, 431-446, (2000) · Zbl 0997.90062
[27] M.A. Noor, Some developments in general variational inequalities, Appl. Math. Comput., to appear · Zbl 1134.49304
[28] Stampacchia, G., Formes bilineaires coercivites sur LES ensembles convexes, C. R. acad. sci. Paris, 258, 4413-4416, (1964) · Zbl 0124.06401
[29] M.A. Noor, Theory of general variational inequalities, Pre-print, Etisalat College of Engineering, Sharjah, UAE, 2003
[30] Xiu, N.; Zhang, J., Some recent advances in projection-type methods for variational inequalities, J. comput. appl. math., 152, 559-585, (2003) · Zbl 1018.65083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.