×

Schrödinger operators and de Branges spaces. (English) Zbl 1054.34019

The author gives a new view on the inverse spectral theory of one-dimensional Schrödinger operators by recognizing it as a part of the de Branges theory of Hilbert spaces of entire functions. The de Branges theorem on the connection between a regular de Branges space and canonical systems is considered as the mother of many inverse theorems.

MSC:

34A55 Inverse problems involving ordinary differential equations
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arov, D.Z.; Dym, H., J-inner matrix functions, interpolation and inverse problems for canonical systems, ifoundations, Integral equations operator theory, 29, 373-454, (1997) · Zbl 0902.30026
[2] Atkinson, F.V., On the location of Weyl circles, Proc. roy. soc. Edinburgh, 88A, 345-356, (1981) · Zbl 0485.34012
[3] Chadan, K.; Sabatier, P.C., Inverse problems in quantum scattering theory, (1989), Springer-Verlag New York · Zbl 0681.35088
[4] Coddington, E.A.; Levinson, N., Theory of ordinary differential equations, (1955), McGraw-Hill New York · Zbl 0042.32602
[5] de Branges, L., Some Hilbert spaces of entire functions I, Trans. amer. math. soc., 96, 259-295, (1960) · Zbl 0094.04705
[6] de Branges, L., Some Hilbert spaces of entire functions II, Trans. amer. math. soc., 99, 118-152, (1961) · Zbl 0100.06901
[7] de Branges, L., Some Hilbert spaces of entire functions III, Trans. amer. math. soc., 100, 73-115, (1961) · Zbl 0112.30101
[8] de Branges, L., Some Hilbert spaces of entire functions IV, Trans. amer. math. soc., 105, 43-83, (1962) · Zbl 0109.04703
[9] de Branges, L., Hilbert spaces of entire functions, (1968), Prentice-Hall Englewood Cliffs, NJ · Zbl 0157.43301
[10] Deift, P.; Trubowitz, E., Inverse scattering on the line, Comm. pure appl. math., 32, 121-251, (1979) · Zbl 0388.34005
[11] Dym, H., An introduction to de branges spaces of entire functions with applications to differential equations of the sturm – liouville type, Adv. math., 5, 395-471, (1970) · Zbl 0213.39503
[12] Dym, H.; McKean, H.P., Gaussian processes, function theory, and the inverse spectral problem, (1976), Academic Press New York · Zbl 0327.60029
[13] Garnett, J.B., Bounded analytic functions, (1981), Academic Press New York · Zbl 0469.30024
[14] Gelfand, I.M.; Levitan, B.M., On the determination of a differential equation from its spectral function, Amer. math. soc. transl. (2), 1, 253-304, (1955) · Zbl 0066.33603
[15] Gesztesy, F.; Simon, B., A new approach to inverse spectral theory, II. general real potentials and the connection to the spectral measure, Ann. math., 152, 593-643, (2000) · Zbl 0983.34013
[16] Gohberg, I.C.; Krein, M.G., Theory and applications of Volterra operators in Hilbert space, Translations of mathematical monographs, Vol. 24, (1970), American Mathematical Society Providence, RI · Zbl 0194.43804
[17] Harris, B.J., The asymptotic form of the titchmarsh – weyl m-function associated with a second order differential equation with locally integrable coefficient, Proc. roy. soc. Edinburgh, 102A, 243-251, (1986) · Zbl 0615.34028
[18] Hassi, S.; de Snoo, H.; Winkler, H., Boundary-value problems for two-dimensional canonical systems, Integral equations operator theory, 36, 445-479, (2000) · Zbl 0966.47012
[19] Hinton, D.; Klaus, M.; Shaw, J.K., Series representation and asymptotics for titchmarsh – weyl m-functions, Differential integral equations, 2, 419-429, (1989) · Zbl 0715.34044
[20] Horvath, M., On the inverse spectral theory of Schrödinger and Dirac operators, Trans. amer. math. soc., 353, 4155-4171, (2001) · Zbl 0977.34018
[21] Levitan, B.M., Inverse sturm – liouville problems, (1987), VNU Science Press Utrecht · Zbl 0749.34001
[22] Levitan, B.M.; Gasymov, M.G., Determination of a differential equation by two of its spectra, Russ. math. surveys, 19, 1-63, (1964) · Zbl 0145.10903
[23] Marchenko, V.A., Sturm – liouville operators and applications, (1986), Birkhäuser Basel
[24] Pöschel, J.; Trubowitz, E., Inverse spectral theory, (1987), Academic Press Orlando
[25] C. Remling, Inverse spectral theory for one-dimensional Schrödinger operators: the A function, preprint (electronically available on my homepage).
[26] Sakhnovich, L.A., Spectral theory of canonical systems. method of operator identities, (1999), Birkhäuser Basel · Zbl 0987.35152
[27] Simon, B., A new approach to inverse spectral theory, I. fundamental formalism, Ann. math., 150, 1029-1057, (1999) · Zbl 0945.34013
[28] Symes, W., Inverse boundary value problems and a theorem of Gelfand and levitan, J. math. anal. appl., 71, 379-402, (1979) · Zbl 0425.35092
[29] Thurlow, C., A generalisation of the inverse spectral theorem of levitan and gasymov, Proc. roy. soc. Edinburgh, 84A, 185-196, (1979) · Zbl 0422.34026
[30] Weidmann, J., Spectral theory of ordinary differential operators, Lecture notes in mathematics, Vol. 1258, (1987), Springer New York · Zbl 0647.47052
[31] Woracek, H., De branges spaces of entire functions closed under forming difference quotients, Integral equations operator theory, 37, 238-249, (2000) · Zbl 0957.46019
[32] Yuditskii, P., A special case of de branges’ theorem on the inverse monodromy problem, Integral equations operator theory, 39, 229-252, (2001) · Zbl 0973.46019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.