×

zbMATH — the first resource for mathematics

Alternate step gradient method. (English) Zbl 1056.65055
Motivated by how to avoid producing zigzags, the author proposes the alternate step (AS) gradient method. The AS method uses an steepest descent step and a J. Barzilai and J. M. Borwein (BB) [IMA J. Numer. Anal. 8, No. 1, 141–148 (1988; Zbl 0638.65055)] step alternately, and is superior to the BB method for symmetric and positive definite linear systems. \(R\)-linear convergence is established for a collection of gradient methods including the AS method. Gradient methods related to the AS method and an extension of the AS method to unconstrained optimization are also discussed. A more efficient gradient algorithm for unconstrained optimization is also provided. Some interesting insights into gradient methods and discussion about monotonicity and nonmonotonicity are also given.

MSC:
65K05 Numerical mathematical programming methods
90C52 Methods of reduced gradient type
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF01831719 · Zbl 0100.14002
[2] DOI: 10.1006/jcph.1999.6224 · Zbl 1017.74501
[3] DOI: 10.1137/S1052623497330963 · Zbl 1047.90077
[4] DOI: 10.1093/imanum/8.1.141 · Zbl 0638.65055
[5] Cauchy A., Comp. Rend. Sci. Paris 25 pp 536– (1847)
[6] DOI: 10.1023/A:1013653923062 · Zbl 1049.90087
[7] DOI: 10.1093/imanum/22.1.1 · Zbl 1002.65069
[8] Dai Y.H. Yuan J.Y. 2001 On a class of gradient algorithms for unconstrained optimization (Preprint)
[9] Fletcher R., Lectures in Applied Mathematics (AMS) 26 pp 165– (1999)
[10] Fletcher R., Report in the International Workshop on ”Optimization and Control with Applications” (2001)
[11] DOI: 10.1093/comjnl/7.2.149 · Zbl 0132.11701
[12] DOI: 10.1137/S003614299427315X · Zbl 0940.65032
[13] Glunt W., J. Comput. Chem. 14 pp 114– (1993)
[14] DOI: 10.1137/0723046 · Zbl 0616.65067
[15] Hestenes M.R., J. Res. Nat. Bur. Standards Sect. 5 pp 409– (1952) · Zbl 0048.09901
[16] Lai Y.L., Acta Mathematicae Applicatae Sinica 4 pp 106– (1981)
[17] Liu W.B., Journal of Optimization Theory and Applications 111 pp 359– (2001) · Zbl 1032.90020
[18] DOI: 10.1145/355934.355936 · Zbl 0454.65049
[19] Nocedal J., Computational Optimization and Applications 22 pp 5– (2002) · Zbl 1008.90057
[20] DOI: 10.1093/imanum/13.3.321 · Zbl 0778.65045
[21] DOI: 10.1137/S1052623494266365 · Zbl 0898.90119
[22] Raydan M., Report in the International Workshop on ”Optimization and Control with Applications” (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.