zbMATH — the first resource for mathematics

Valued outranking relations in ELECTRE providing manageable disaggregation procedures. (English) Zbl 1056.90088
Summary: In ELECTRE methods, the construction of an outranking relation amounts at validating or invalidating, for any pair of alternatives \((a,b)\), the assertion “\(a\) is at least as good as \(b\)”. This comparison is grounded on the evaluation vectors of both alternatives, and on additional information concerning the decision maker’s preferences, accounting for two conditions: concordance and non-discordance.
In decision processes using these methods, the analyst should interact with the decision maker in order to elicit values for preferential parameters. This can be done either directly or through a disaggregation procedure that infers the parameters values from holistic judgements provided by the decision maker. Inference is usually performed through an optimization program that accounts for the aggregation model and minimizes an ”error function”. Although disaggregation approaches have been largely used in additive models, only few advances have been made towards a disaggregation approach for outranking methods. Indeed, outranking methods may lead to computationally difficult inference problems.
In this paper we are concerned with a slight adaptation of the valued outranking relation used in the ELECTRE III and ELECTRE TRI. Such modification is shown to preserve the original discordance concept. We show that the modified outranking relation makes it easier to solve inference programs.

90B50 Management decision making, including multiple objectives
Full Text: DOI
[1] Beuthe, M.; Scannella, G., Comparative analysis of UTA multicriteria methods, European journal of operational research, 130, 2, 246-262, (2001) · Zbl 1068.90564
[2] Brans, J.P.; Mareschal, B.; Vincke, Ph., PROMéTHéE: A new family of outranking methods in multicriteria analysis, (), 408-421 · Zbl 0571.90042
[3] Dias, L.C.; Clı́maco, J.N., On computing ELECTRE’s credibility indices under partial information, Journal of multi-criteria decision analysis, 8, 2, 74-92, (1999) · Zbl 0941.90050
[4] L.C. Dias, V. Mousseau, Inferring ELECTRE’s veto-related parameters from outranking examples. Research report no. 5/2002, INESC Coimbra, 2002 · Zbl 1079.90072
[5] Dias, L.C.; Mousseau, V.; Figueira, J.; Clı́maco, J., An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI, European journal of operational research, 138, 2, 332-348, (2002) · Zbl 1003.90512
[6] Doumpos, M.; Hurson, C., A multicriteria decision aid method for the assessment of business failure risk, Foundations of computing and decision sciences, 20, 2, 99-112, (1995) · Zbl 0853.90072
[7] Fodor, J.; Roubens, M., Fuzzy preference modelling and multicriteria decision support, (1994), Kluwer Academic Publishers Dordrecht · Zbl 0827.90002
[8] Jacquet-Lagréze, E.; Siskos, Y., Assessing a set of additive utility functions for multicriteria decision-making, the UTA method, European journal of operational research, 10, 2, 151-164, (1982) · Zbl 0481.90078
[9] Jacquet-Lagréze, E.; Siskos, Y., Preference disaggregation, 20 years of MCDA experience, European journal of operational research, 130, 2, 233-245, (2001) · Zbl 1068.90566
[10] Keeney, R.; Raiffa, H., Decision with multiple objectives: preferences and value tradeoffs, (1976), John Wiley and Sons New York
[11] Kiss, L.N.; Martel, J.-M.; Nadeau, R., ELECCALC–an interactive software for modelling the decision maker’s preferences, Decision support systems, 12, 4-5, 757-777, (1994)
[12] Leclercq, J.-P., Propositions d’extension de la notion de dominance en présence de relations d’ordre sur LES pseudo-critères: melchior, Revue belge de recherche opérationnelle de statistique et d’lnformatique, 24, 1, 32-46, (1984) · Zbl 0553.90011
[13] Miettinen, K.; Salminen, P., Decision-aid for discrete multiple criteria decision making problems with imprecise data, European journal of operational research, 119, 1, 50-60, (1999) · Zbl 0949.90054
[14] Mousseau, V.; Dias, L.C.; Figueira, J.; Gomes, C.; Clı́maco, J., Resolving inconsistencies among constraints on the parameters of an MCDA model, European journal of operational research, 143, 1, 332-348, (2003)
[15] Mousseau, V.; Figueira, J.; Naux, J.-Ph., Using assignment examples to infer weights for ELECTRE TRI method: some experimental results, European journal of operational research, 130, 2, 263-275, (2001) · Zbl 1068.90570
[16] V. Mousseau, R. Slowinski, L’approche agrégation/désagrégation pour les méthodes de surclassement, Séminaire Modélisation des Préférences et Aide Multicritère à la Décision, LAMSADE, Université de Paris-Dauphine, 1997
[17] Mousseau, V.; Slowinski, R., Inferring an ELECTRE TRI model from assignment examples, Journal of global optimization, 12, 2, 157-174, (1998) · Zbl 0904.90093
[18] Mousseau, V.; Slowinski, R.; Zielniewicz, P., A user-oriented implementation of the ELECTRE TRI method integrating preference elicitation support, Computers and operations research, 27, 7-8, 757-777, (2000) · Zbl 0972.90038
[19] Paelinck, J.H.P., Qualiflex: A flexible multiple-criteria decision method, Economics letters, 1, 193-197, (1978)
[20] Pastijn, H.; Leysen, J., Constructing an outranking relation with ORESTE, Mathematical and computer modelling, 12, 10-11, 1255-1268, (1989)
[21] Perny, P.; Roy, B., The use of fuzzy outranking relations in preference modelling, Fuzzy sets and systems, 49, 1, 33-53, (1992) · Zbl 0765.90003
[22] Pirlot, M., A characterisation of “min” as a procedure for exploiting valued preference relations and related results, Journal of multi-criteria decision analysis, 4, 37-56, (1995) · Zbl 0838.90072
[23] Roy, B., ELECTRE III: un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples, Cahiers du CERO, 20, 1, 3-24, (1978) · Zbl 0377.90003
[24] Roy, B., The outranking approach and the foundations of ELECTRE methods, Theory and decision, 31, 1, 49-73, (1991)
[25] Roy, B.; Bouyssou, D., Aide multicritère à la décision: Méthodes et cas, (1993), Economica Paris · Zbl 0925.90230
[26] Roy, B.; Vanderpooten, D., An overview on the the European school of MCDA: emergence, basic features and current work, European journal of operational research, 99, 1, 26-27, (1997) · Zbl 0953.90536
[27] Vansnick, J.-C1., On the problem of weight in multiple criteria decision making (the noncompensatory approach), European journal of operational research, 24, 288-294, (1986) · Zbl 0579.90059
[28] W. Yu, Aide multicritère à la décision dans le cadre de la problématique du tri: concepts, méthodes et applications. Ph.D. Thesis, Université Paris-Dauphine, 1992
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.