## Growth estimates for solutions of linear complex differential equations.(English)Zbl 1057.34111

Let $f^{(k)}+A_{k-1}(z) f^{(k-1)}+ \cdots+ A_1(z)f'+A_0(z)f=0 \tag{1}$ be a complex differential equation. The coefficients $$A_0(z)$$, $$A_1 (z),\dots,A_{k-1}(z)$$ are analytic in the disc $$D_R=\{z\in\mathbb{C}: | z| <R\}$$, $$0<R \leq+ \infty$$. A representation theorem for the solutions of equation (1) is given. By this theorem, for any $$z$$, $$z_0 \in D_R$$ it holds $f(z)=\sum^{K-1}_{n=0} \frac {f^{(n)}(z_0)} {n!}(z-z_0)^n- \frac{1}{(K-1)!} \int^z_{z_0} (z-\xi)^{k-1}A(\xi)f (\xi)\,d\xi. \tag{2}$ The representation thereom yields the growth estimates on the solutions of the general equation (1) in $$D_R$$.
(a) If $$0<R\leq 1$$, then there exist a constant $$c_1>0$$, depending on the initial values of $$f$$ at $$z_0=0$$, and a constant $$c_2>0$$, such that $\bigl| f(z)\bigr |\leq c_1\exp\left(c_2\sum^{n-1}_{j=0} \sum^j_{n=0}\int^r_0 \bigl| A_j^{(n)} (se^{i\theta}) \bigr|(R-S)^{K-j+n-1}\,ds \right)$ for all $$\theta\in[0,2\pi)$$ and $$r\in[0,R)$$.
(b) If $$1<R\leq+ \infty$$, then there exist a constant $$C_1> 0$$, depending on the initial values of at $$z_0=e^{i\theta}$$, and a constant $$C_2>0$$, such that $\bigl| f(z) \bigr |\leq C_1r^{K-1}\exp \left(C_2 \sum^{K-1}_{j=0} \sum^j_{n= 0} \int^r_0 \bigl| A_j^{(n)}(se^{i\theta}) \bigr | s^{K-j+n-1} \,ds\right)$ for all $$\theta\in [0,a\pi)$$ and $$r\in(1,R)$$. The Herold’s comparison theorem yields the next growth estimates.

### MSC:

 34M10 Oscillation, growth of solutions to ordinary differential equations in the complex domain 30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
Full Text: