×

Shrubs in the Mandelbrot set ordering. (English) Zbl 1057.37048


MSC:

37F45 Holomorphic families of dynamical systems; the Mandelbrot set; bifurcations (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/S0167-2789(98)00243-7 · Zbl 0988.37060
[2] DOI: 10.1090/psapm/039/1010237
[3] DOI: 10.1142/9789814415712_0008
[4] DOI: 10.1142/S0218348X95000564 · Zbl 0929.37016
[5] Douady A., Publ. Math. d’Orsay, 85-04 pp 56–
[6] A. Douady, Chaotic Dynamics and Fractals, eds. M. Barnsley and S. G. Demko (Academic Press, NY, 1986) pp. 155–168.
[7] Gilbert E. N., Illinois J. Math. 5 pp 657–
[8] DOI: 10.1103/PhysRevLett.48.1507
[9] DOI: 10.1016/0378-4371(93)90342-2
[10] DOI: 10.1007/BFb0103999 · Zbl 0970.37032
[11] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129
[12] DOI: 10.1016/0375-9601(93)90011-N
[13] B. B. Mandelbrot, Nonlinear Dynamics, ed. R. H. G. Helleman (Annals of the New York Academy of Sciences, NY, 1980) pp. 249–259.
[14] DOI: 10.1016/0167-2789(83)90128-8 · Zbl 1194.30028
[15] DOI: 10.1038/261459a0 · Zbl 1369.37088
[16] DOI: 10.1016/0097-3165(73)90033-2 · Zbl 0259.26003
[17] J. Milnor, Computers in Geometry and Topology, Lecture Notes in Pure and Applied Mathematics 114, ed.  Tangora (Dekker, 1989) pp. 211–257.
[18] Milnor J., Asterisque 261 pp 277–
[19] Misiurewicz M., Mem. Am. Math. Soc. 94 pp 1–
[20] Myrberg P. J., Ann. Acad. Sci. Fenn.-M. 336 pp 1–
[21] DOI: 10.1016/0960-0779(95)00071-2 · Zbl 1080.37562
[22] DOI: 10.1016/0378-4371(96)00128-8
[23] DOI: 10.1103/PhysRevE.56.1476
[24] DOI: 10.1016/S0378-4371(98)00083-1
[25] DOI: 10.1016/S0378-4371(00)00586-0 · Zbl 0972.37038
[26] DOI: 10.1007/978-3-642-61717-1
[27] DOI: 10.1016/0378-4371(96)00127-6
[28] DOI: 10.1103/PhysRevE.58.7214
[29] DOI: 10.1007/BF01646553 · Zbl 0223.76041
[30] Sharkovsky A. N., Ukrain. Mat. Zhurn. 16 pp 61–
[31] DOI: 10.1007/978-94-011-1763-0
[32] DOI: 10.1016/0378-4371(92)90081-Z · Zbl 0776.58025
[33] DOI: 10.1016/0378-4371(94)90227-5
[34] DOI: 10.1016/0378-4371(94)90176-7 · Zbl 0808.58024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.