×

zbMATH — the first resource for mathematics

Econometric analysis of realized volatility and its use in estimating stochastic volatility models. (English) Zbl 1059.62107
Summary: The availability of intraday data on the prices of speculative assets means that we can use quadratic variation-like measures of activity in financial markets, called realized volatility, to study the stochastic properties of returns. Here, under the assumption of a rather general stochastic volatility model, we derive the moments and the asymptotic distribution of the realized volatility error – the difference between realized volatility and the discretized integrated volatility (which we call actual volatility). These properties can be used to allow us to estimate the parameters of stochastic volatility models without recourse to the use of simulation-intensive methods.

MSC:
62P05 Applications of statistics to actuarial sciences and financial mathematics
62M20 Inference from stochastic processes and prediction
62E20 Asymptotic distribution theory in statistics
62M99 Inference from stochastic processes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andersen, Heterogeneous information arrivals and return volatility dynamics: uncovering the long-run in high frequency returns, J. Finan. 52 pp 975– (1997a) · doi:10.1111/j.1540-6261.1997.tb02722.x
[2] Intraday periodicity and volatility persistence in financial markets, J. Emp. Finan. 4 pp 115– (1997b) · doi:10.1016/S0927-5398(97)00004-2
[3] Answering the skeptics: yes, standard volatility models do provide accurate forecasts, Int. Econ. Rev. 39 pp 885– (1998a) · doi:10.2307/2527343
[4] Deutsche mark-dollar volatility: intraday activity patterns, macroeconomic announcements, and longer run dependencies, J. Finan. 53 pp 219– (1998b) · doi:10.1111/0022-1082.85732
[5] Andersen, The distribution of realised stock return volatility, J. Finan. Econ. 61 pp 43– (2001) · doi:10.1016/S0304-405X(01)00055-1
[6] Andersen, Exchange rate returns standardised by realised volatility are (nearly) Gaussian, Multinatn. Finan. J. 4 pp 159– (2000) · doi:10.17578/4-3/4-2
[7] The distribution of exchange rate volatility, J. Am. Statist. Ass. 92 pp 42– (2001) · Zbl 1015.62107
[8] Andreou, Rolling-sampling volatility estimators: some new theoretical, simulation and empirical results, J. Bus. Econ. Statist. 19 (2001)
[9] Areal, The realised volatility of FTSE-100 futures prices, J. Fut. Markts 22 (2002)
[10] Bai , X. Russell , J. R. Tiao , G. C. 2000 Beyond Merton’s utopia: effects of non-normality and dependence on the precision of variance estimates using high-frequency financial data
[11] Barndorff, Processes of normal inverse Gaussian type, Finan. Stochast. 2 pp 41– (1998) · Zbl 0894.90011 · doi:10.1007/s007800050032
[12] Superposition of Ornstein-Uhlenbeck type processes, Theory Probab. Applic. 45 pp 175– (2001) · Zbl 1003.60039 · doi:10.1137/S0040585X97978166
[13] Barndorff-Nielsen, Asymptotic Techniques for Use in Statistics (1989) · Zbl 0672.62024 · doi:10.1007/978-1-4899-3424-6
[14] Barndorff-Nielsen, Parametric modelling of turbulence, Phil. Trans. R. Soc. Lond. 332 pp 439– (1990) · Zbl 0955.62519 · doi:10.1098/rsta.1990.0125
[15] Barndorff-Nielsen, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics (with discussion), J. R. Statist. Soc. 63 pp 167– (2001a) · Zbl 0983.60028 · doi:10.1111/1467-9868.00282
[16] 2001b How accurate is the asymptotic approximation to the distribution of realised volatility?
[17] 2001c Realised power variation and stochastic volatility
[18] Bollerslev, ARCH models, The Handbook of Econometrics 4 pp 2959– (1994) · doi:10.1016/S1573-4412(05)80018-2
[19] Bollerslev, Estimating stochastic volatility diffusion using conditional moments of integrated volatility, J. Econometr. (2001) · Zbl 1020.62096
[20] Christensen, The relation between implied and realized volatility, J. Finan. Econ. 37 pp 125– (1998) · doi:10.1016/S0304-405X(98)00034-8
[21] Clark, A subordinated stochastic process model with fixed variance for speculative prices, Econometrica 41 pp 135– (1973) · Zbl 0308.90011 · doi:10.2307/1913889
[22] Comte, Long memory in continuous-time stochastic volatility models, Math. Finan. 8 pp 291– (1998) · Zbl 1020.91021 · doi:10.1111/1467-9965.00057
[23] Cox, Long-range dependence, non-linearity and time irreversibility, J. Time Ser. Anal. 12 pp 329– (1991) · Zbl 0735.62088 · doi:10.1111/j.1467-9892.1991.tb00087.x
[24] Dacorogna, An Introduction to High-frequency Finance (2001) · Zbl 1071.35508
[25] Ding, Modeling volatility persistence of speculative returns: a new approach, J. Econometr. 73 pp 185– (1996) · Zbl 1075.91626 · doi:10.1016/0304-4076(95)01737-2
[26] Doornik, Ox: Object Oriented Matrix Programming, 3.0 (2001)
[27] Elerian, Likelihood inference for discretely observed non-linear diffusions, Econometrica 69 pp 959– (2001) · Zbl 1017.62068 · doi:10.1111/1468-0262.00226
[28] Engle, Cointegration, Causality, and Forecasting: a Festschrift in Honour of Clive W. J. Granger pp 475– (1999)
[29] Foster, Continuous record asymptotics for rolling sample variance estimators, Econometrica 64 pp 139– (1996) · Zbl 0860.62101 · doi:10.2307/2171927
[30] Francq, Covariance matrix estimation for estimators of mixing weak ARMA models, J. Statist. Planng Inf. 83 pp 369– (2000) · Zbl 0976.62086 · doi:10.1016/S0378-3758(99)00109-3
[31] Gallant, Estimating stochastic differential equations efficiently by minimum chi-square, Biometrika 84 pp 125– (1997) · Zbl 0953.62084 · doi:10.1093/biomet/84.1.125
[32] Genon-Catalot, Stochastic volatility as hidden Markov models and statistical applications, Bernoulli 6 pp 1051– (2000) · Zbl 0966.62048 · doi:10.2307/3318471
[33] Ghysels , E. Harvey , A. C. Renault , E. 1996 Stochastic volatility Statistical Methods in Finance C. R. Rao G. S. Maddala 119 191
[34] Gourieroux, Indirect inference, J. Appl. Econometr. 8 pp S85– (1993) · doi:10.1002/jae.3950080507
[35] Granger, Long memory relationships and the aggregation of dynamic models, J. Econometr. 14 pp 227– (1980) · Zbl 0466.62108 · doi:10.1016/0304-4076(80)90092-5
[36] Hamilton, Time Series Analysis (1994) · Zbl 0831.62061
[37] Harvey, Forecasting, Structural Time Series Models and the Kalman Filter (1989)
[38] Hendry, Dynamic Econometrics (1995) · Zbl 0897.62127 · doi:10.1093/0198283164.001.0001
[39] Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier’s Series (1927) · JFM 53.0226.01
[40] Kim, Stochastic volatility: likelihood inference and comparison with ARCH models, Rev. Econ. Stud. 65 pp 361– (1998) · Zbl 0910.90067 · doi:10.1111/1467-937X.00050
[41] Koopman, Statistical algorithms for models in state space using Ssf-Pack 2.2, Econometr. J. 2 pp 107– (1999) · Zbl 0935.91034 · doi:10.1111/1368-423X.00023
[42] Lebesgue, Integrale, longuer, aire, Ann. Math. Pura Applic. 7 pp 231– (1902) · JFM 33.0307.02 · doi:10.1007/BF02420592
[43] Maheu, Nonlinear features of realised FX volatility, Rev. Econ. Statist. 83 (2001)
[44] Meddahi, Temporal aggregation of volatility models, J. Econometr. (2002) · Zbl 1282.91239
[45] Munroe, Introduction to Measure and Integration (1953) · Zbl 0050.05603
[46] Poterba, The persistence of volatility and stock market fluctuations, Am. Econ. Rev. 76 pp 1124– (1986)
[47] Schwert, Why does stock market volatility change over time, J. Finan. 44 pp 1115– (1989) · doi:10.1111/j.1540-6261.1989.tb02647.x
[48] Shephard, Time Series Models in Econometrics, Finance and Other Fields pp 1– (1996)
[49] Silverman, Density Estimation for Statistical and Data Analysis (1986) · Zbl 0617.62042 · doi:10.1007/978-1-4899-3324-9
[50] Sørensen, Prediction based estimating equations, Econometr. J. 3 pp 123– (2000) · Zbl 0998.62071 · doi:10.1111/1368-423X.00042
[51] Taylor, Modelling Financial Time Series (1986)
[52] Modelling stochastic volatility, Math. Finan. 4 pp 183– (1994) · Zbl 0884.90054 · doi:10.1111/j.1467-9965.1994.tb00057.x
[53] Taylor, The incremental volatility information in one million foreign exchange quotations, J. Emp. Finan. 4 pp 317– (1997) · doi:10.1016/S0927-5398(97)00010-8
[54] Whittle, Prediction and Regulation (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.