Closure systems, implicational systems, overhanging relations and the case of hierarchical classification. (English) Zbl 1059.93007

The authors investigate Moore families and closure operators, especially those appearing in hierarchical classification, from the point of view of their related implicational systems and overhanging relations. They establish which properties distinguish hierarchies among Moore families and give a new proof of a theorem of Adams. They also characterize canonical implication bases of hierarchies and obtain a similar results for overhangings.


93A13 Hierarchical systems
06A15 Galois correspondences, closure operators (in relation to ordered sets)
68T30 Knowledge representation
Full Text: DOI


[1] Adams, E.N., Consensus techniques and the comparison of taxonomic trees, Systematic zoology, 21, 390-397, (1972)
[2] Adams, E.N., N-trees as nestings: complexity, similarity and consensus, Journal of classification, 3, 299-317, (1986) · Zbl 0647.62057
[3] Armstrong, W.W., Dependency structures of data base relationships, Information processing, 74, 580-583, (1974) · Zbl 0296.68038
[4] Bandelt, H.J.; Dress, A.W.M., Weak hierarchies associated with similarity measures: an additive clustering technique, Bulletin of mathematical biology, 51, 113-166, (1989) · Zbl 0666.62058
[5] Barthélemy, J.P.; Brucker, F., NP-hard approximation problems in overlapping clustering, Journal of classification, 18, 159-183, (2001) · Zbl 1040.91084
[6] Birkhoff, G., On the combination of subalgebras, Proceedings of the Cambridge philosophy society, 29, 441-464, (1933) · JFM 59.0154.02
[7] Burosch, G.; Demetrovics, J.; Katona, G.O.H., The poset of closures as a model of changing databases, Order, 4, 127-142, (1987) · Zbl 0648.06004
[8] Caspard, N., 1998. Étude structurelle et algorithmique de classes de treillis obtenus par duplication. Ph.D. Thesis, University Paris 1 Panthéon-Sorbonne, Paris.
[9] Caspard, N.; Monjardet, B., The lattices of Moore families and closure operators on a finite set: a survey, Discrete applied mathematics, 127, 2, 241-269, (2003) · Zbl 1026.06008
[10] Colonius, H.; Schultze, H.H., Tree structure for proximity data, British journal of mathematical and statistical psychology, 34, 167-180, (1981) · Zbl 0472.62107
[11] Diatta, J.; Fichet, B., From asprejan hierarchies and bandelt-dress weak-hierarchies to quasi-hierarchies, (), 111-118
[12] Domenach, F.; Leclerc, B., Biclosed binary relations and Galois connections, Order, 18, 89-104, (2001) · Zbl 0987.06005
[13] Domenach, F.; Leclerc, B., On the roles of Galois connections in classification, (), 31-40
[14] Ganter, B., Algorithmen zur formalen begriffsanalyse, (), 241-254
[15] Ganter, B., Lattice theory and formal concept analysis, (), 79-90 · Zbl 0834.06012
[16] Ganter, B.; Wille, R., Formal concept analysis, (1999), Springer Berlin
[17] Guigues, J.L.; Duquenne, V., Familles minimales d’implications informatives résultant d’un tableau de données binaires, Mathématiques et sciences humaines, 95, 5-18, (1986)
[18] Leclerc, B., Consensus of classifications: the case of trees, (), 81-90 · Zbl 1051.91530
[19] Maier, D., The theory of relational data bases, (1983), Computer Science Press
[20] Öre, O., Galois connections, Transactions of the American mathematical society, 55, 494-513, (1944)
[21] Plott, C.R., Path independence, rationality and social choice, Econometrica, 41, 6, 1075-1091, (1973) · Zbl 0297.90017
[22] Raderanirina, V., 2001. Treillis et agrégation de familles de Moore et de fonctions de choix. Ph.D. Thesis, University Paris 1 Panthéon-Sorbonne.
[23] Vach, W., Preserving consensus hierarchies, Journal of classification, 11, 59-77, (1994) · Zbl 0816.92001
[24] Wille, R., Subdirect decomposition of concept lattices, Algebra universalis, 17, 275-287, (1983) · Zbl 0539.06006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.