×

Delay-dependent robust stability of uncertain nonlinear systems with time delay. (English) Zbl 1060.34041

The paper deals with the stability of uncertain delay differential equations. Using the Lyapunov method a new delay-dependent stability criterion is obtained.

MSC:

34K20 Stability theory of functional-differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Yan, J.J., Robust stability analysis of uncertain time delay systems with delay-dependence, Electron. lett., 37, 2, 135-137, (2001)
[2] Yan, J.J.; Tsai, J.S.H.; Kung, F.C., A new result on the robust stability of uncertain systems with time-varying delay, IEEE trans. circ. syst.-I, 48, 7, 914-916, (2001) · Zbl 1003.93037
[3] Doyle, J.C.; Glover, K.; Khargonekar, P.P.; Francis, B.A., State-space solution to standard H2 and H∞ control problems, IEEE trans. autom. contr., 34, 831-846, (1989)
[4] Liu, P.L.; Su, T.J., Robust stability of interval time-delay systems with delay-dependence, Syst. contr. lett., 33, 231-239, (1998) · Zbl 0902.93052
[5] Su, J.H., Further results on the robust stability of linear systems with a single delay, Syst. contr. lett., 23, 374-379, (1994)
[6] Trinh, H.; Aldeen, M., Stability robustness bound for linear systems with delayed perturbations, IEEE proc. D contr. theory appl., 142, 345-350, (1995) · Zbl 0831.93050
[7] Wu, H.; Mizukami, K., Robust stability criteria for dynamical systems in delayed perturbations, IEEE trans. autom. contr., 40, 487-490, (1995) · Zbl 0821.93060
[8] Hamed, A., On the stability of time delay systems: new result, Int. J. contr., 43, 321-324, (1986) · Zbl 0613.34063
[9] Mori, T.; Noldus, E.; Kuwahara, M., A way to stabilize linear systems with delayed state, Automatica, 19, 571-573, (1983) · Zbl 0544.93055
[10] Xu, B., Comments on robust stability of delay dependence for linear uncertain systems, IEEE trans. autom. contr., 39, 2365, (1994) · Zbl 0825.93605
[11] Oucheriah, S., Measure of robustness for uncertain time-delay linear system, ASME J. dyn. syst. meas. contr., 117, 633-635, (1995) · Zbl 0844.93063
[12] Kolmanovskii, V.B.; Niculescu, S.; Richard, J., On the lyapunov – krasovskii functionals for stability analysis of linear delay systems, Int. J. contr., 72, 4, 374-384, (1999) · Zbl 0952.34057
[13] V.B. Kolmanovskii, S. Niculescu, K. Gu, Delay effects on stability: a survey, Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona, USA, December 1999, pp. 1993-1998
[14] Kim, Jin-Hoon, Delay and its time-derivative dependent robust stability of time delayed linear systems with uncertainty, IEEE trans. autom. contr., 46, 5, 789-792, (2001) · Zbl 1008.93056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.