ADER schemes for three-dimensional non-linear hyperbolic systems. (English) Zbl 1060.65641

Summary: We carry out the extension of the ADER approach to multidimensional non-linear systems of conservation laws. We implement non-linear schemes of up to fourth order of accuracy in both time and space. Numerical results for the compressible Euler equations illustrate the very high order of accuracy and non-oscillatory properties of the new schemes. Compared to the state-of-art finite-volume WENO schemes the ADER schemes are faster, more accurate, need less computer memory and have no theoretical accuracy barrier.


65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws


Full Text: DOI


[1] Balsara, D.S.; Shu, C.W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. comput. phys., 160, 405-452, (2000) · Zbl 0961.65078
[2] Ben-Artzi, M.; Falcovitz, J., A second-order Godunov-type scheme for compressible fluid dynamics, J. comput. phys., 55, 1-32, (1984) · Zbl 0535.76070
[3] Casper, J.; Atkins, H., A finite-volume high order ENO scheme for two dimensional hyperbolic systems, J. comput. phys., 106, 62-76, (1993) · Zbl 0774.65066
[4] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. sci. comput., 16, 173-261, (2001) · Zbl 1065.76135
[5] Godunov, S.K., A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat. sbornik, 47, 357-393, (1959)
[6] Godunov, S.K.; Zabrodin, A.V.; Ivanov, M.Y.; Kraiko, A.N.; Prokopov, G.P., Numerical solution of multi-dimensional problems in gas dynamics, (1976), Nauka Press Moscow, (in Russian)
[7] Godunov, S.; Zabrodin, A.; Ivanov, M.Y.; Kraiko, A.N.; Prokopov, G.P., Resolution numerique des problemes multidimensionnels de la dinamique des gaz, (1979), Mir Moscow, 414 p
[8] Hu, C.; Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes, J. comput. phys., 150, 97-127, (1999) · Zbl 0926.65090
[9] Harten, A.; Lax, P.D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM rev., 25, 1, 35-61, (1983) · Zbl 0565.65051
[10] Jiang, G.S.; Shu, C.W., Efficient implementation of weighted ENO schemes, J. comput. phys., 126, 202-212, (1996) · Zbl 0877.65065
[11] M. K¨aser, A. Iske, ADER schemes for the solution of conservation laws on adaptive triangulations, in: A. Iske, T. Randen (Eds.), Mathematical Methods and Modeling in Hydrocarbon Exploration and Production, The Springer Book Series Mathematics in Industry, to appear, 2004
[12] Kolgan, V.P., Application of the minimum-derivative principle in the construction of finite-difference schemes for numerical analysis of discontinuous solutions in gas dynamics, Uch. zap. tsagi, 3, 6, 68-77, (1972), (in Russian)
[13] Kolgan, V.P., Finite-difference schemes for computation of three dimensional solutions of gas dynamics and calculation of a flow over a body under an angle of attack, Uch. zap. tsagi, 6, 2, 1-6, (1975), (in Russian)
[14] Men’shov, I.S., Increasing the order of approximation of godunov’s scheme using solution of the generalized Riemann problem, USSR J. comput. math. and math. phys., 30, 5, 54-65, (1990) · Zbl 0739.65079
[15] Men’shov, I.S., Generalized problem of break-up of a single discontinuity, Prikl. matem. i mekhan. (J. appl. math. mech.), 55, 1, 86-95, (1991)
[16] Men’shov, I.S., Accuracy increase of the Godunov scheme for stationary supersonic Euler equations based on the solution of generalized Riemann problem, USSR J. comput. math. and math. phys., 32, 2, 257-263, (1992) · Zbl 0772.76052
[17] Qiu, J.; Shu, C.-W., Finite difference WENO schemes with Lax-Wendroff type time discretization, SIAM J. sci. comput., 24, 2185-2198, (2003) · Zbl 1034.65073
[18] Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. comput. phys., 43, 357-372, (1981) · Zbl 0474.65066
[19] Rusanov, V.V., Calculation of interaction of non-steady shock waves with obstacles, USSR J. comput. math. and phys., 1, 267-279, (1961)
[20] Schwartzkopff, T.; Munz, C.D.; Toro, E.F., ADER-2D: a high-order approach for linear hyperbolic systems in 2D, J. sci. comput., 17, 231-240, (2002) · Zbl 1022.76034
[21] Schwartzkopff, T.; Dumbser, M.; Munz, C.D., Fast high order ADER schemes for linear hyperbolic equations, J. comput. phys., 197, 2, 532-539, (2004) · Zbl 1052.65078
[22] Shi, J.; Hu, C.; Shu, C.-W., A technique for treating negative weights in WENO schemes, J. comput. phys., 175, 108-127, (2002) · Zbl 0992.65094
[23] Shu, C.-W., Total-variation-diminishing time discretizations, SIAM J. sci. stat. comp., 9, 1073-1084, (1988) · Zbl 0662.65081
[24] Spitery, R.J.; Ruuth, S.J., A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. numer. anal., 40, 2, 469-491, (2002) · Zbl 1020.65064
[25] Takakura, Y.; Toro, E.F., Arbitrarily accurate non-oscillatory schemes for a nonlinear conservation law, Cfd j., 11, 1, 7-18, (2002)
[26] Titarev, V.A.; Toro, E.F., ADER: arbitrary high order Godunov approach, J. sci. comput., 17, 609-618, (2002) · Zbl 1024.76028
[27] Titarev, V.A.; Toro, E.F., High order ADER schemes for the scalar advection-reaction-diffusion equations, Cfd j., 12, 1, 1-6, (2003)
[28] Toro, E.F., A weighted average flux method for hyperbolic conservation laws, Proc. roy. soc. lond., 423, 401-418, (1989) · Zbl 0674.76060
[29] Toro, E.F., Primitive conservative and adaptive schemes for hyperbolic conservation laws, (), 323-385 · Zbl 0958.76062
[30] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, (1999), Springer Berlin · Zbl 0923.76004
[31] Toro, E.F.; Millington, R.C.; Nejad, L.A.M., Primitive upwind methods for hyperbolic partial differential equations, (), 421-426
[32] Toro, E.F.; Millington, R.C.; Nejad, L.A.M., Towards very high order Godunov schemes, (), 907-940 · Zbl 0989.65094
[33] Toro, E.F.; Titarev, V.A., Solution of the generalised Riemann problem for advection-reaction equations, Proc. roy. soc. lond., 458, 2018, 271-281, (2002) · Zbl 1019.35061
[34] E.F. Toro, V.A. Titarev, TVD Fluxes for the high-order ADER schemes, Preprint NI03011-NPA. Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK, 2003, 37 p., J. Sci. Comput. to appear
[35] Toro, E.F; Titarev, V.A., ADER schemes for scalar hyperbolic conservation laws in three space dimensions, J. comput. phys., 202, 196-215, (2005) · Zbl 1061.65103
[36] E.F. Toro, Multi-stage predictor-corrector fluxes for hyperbolic equations. Preprint NI03037-NPA. Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK, 2003
[37] Toro, E.F.; Spruce, M.; Speares, W., Restoration of the contact surface in the harten-Lax-Van leer Riemann solver, J. shock waves, 4, 25-34, (1994) · Zbl 0811.76053
[38] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. comput. phys., 54, 115-173, (1984) · Zbl 0573.76057
[39] Y.-T. Zhang, J. Shi, C.-W. Shu, Y. Zhou, Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers, Phys. Rev. E, 68, article number 046709 (2003) 1-16
[40] van Leer, B., Towards the ultimate conservative difference scheme V: a second order sequel to godunov’ method, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.