×

zbMATH — the first resource for mathematics

The method of fundamental solutions for scattering and radiation problems. (English) Zbl 1060.76649
Summary: The development of the method of fundamental solutions (MFS) and related methods for the numerical solution of scattering and radiation problems in fluids and solids is described and reviewed. A brief review of the developments and applications in all areas of the MFS over the last five years is also given. Future possible areas of applications in fields related to scattering and radiation problems are identified.

MSC:
76Q05 Hydro- and aero-acoustics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
Software:
HSL; HYBRJ; minpack; NAG
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Doicu, A.; Eremin, Y.; Wriedt, T., Acoustic and electromagnetic scattering analysis using discrete sources, (2000), Academic Press New York · Zbl 0948.78007
[2] Hafner, C., Post-modern electromagnetics, (1999), Wiley Chichester
[3] Kaklamani, D.I.; Anastassiu, H.T., Aspects of the method of auxiliary sources (MAS) in computational electromagnetics, IEEE antennas propag mag, 44, 3, 48-64, (2002)
[4] Christiansen, S., Condition number of matrices derived from two classes of integral equations, Math meth appl sci, 3, 364-392, (1981) · Zbl 0485.65089
[5] Ochmann, M., The source simulation technique for acoustic radiation problems, Acustica, 81, 512-527, (1995) · Zbl 0856.76079
[6] Garbow, B.S.; Hillstrom, K.E.; Moré, J.J., MINPACK project, (1980), Argonne National Laboratory
[7] ()
[8] Numerical Algorithms Group Library, NAG(UK) Ltd, Wilkinson House, Jordan Hill Road, Oxford, UK.
[9] Karageorghis, A.; Fairweather, G., The method of fundamental solutions for the numerical solution of the biharmonic equation, J comput phys, 69, 434-459, (1987) · Zbl 0618.65108
[10] Poullikkas, A.; Karageorghis, A.; Georgiou, G., Methods of fundamental solutions for harmonic and biharmonic boundary value problems, Comput mech, 21, 416-423, (1998) · Zbl 0913.65104
[11] Fairweather, G.; Karageorghis, A., The method of fundamental solutions for elliptic boundary value problems, Adv computat math, 9, 69-95, (1998) · Zbl 0922.65074
[12] Cisilino, A.P.; Sensale, B., Optimal placement of the source points for singular problems in the method of fundamental solutions, (), 67-74 · Zbl 1146.74347
[13] Cisilino, A.P.; Sensale, B., Application of a simulated annealing algorithm in the optimal placement of the source points in the method of the fundamental solutions, Comput mech, 28, 129-136, (2002) · Zbl 1146.74347
[14] Saavedra, I.; Power, H., Adaptive refinement in method of fundamental solutions for bidimensional Laplace problems, Bound elem commun, 12, 3-11, (2001)
[15] Nishimura, R.; Nishimori, K.; Ishihara, N., Determining the arrangement of fictitious charges in charge simulation method using genetic algorithms, J electrostat, 49, 95-105, (2000)
[16] Nishimura, R.; Nishimori, K.; Ishihara, N., Automatic arrangement of fictitious charges and contour points in charge simulation method for polar coordinate system, J electrostat, 51/52, 618-624, (2001)
[17] Smyrlis, Y.S.; Karageorghis, A., Some aspects of the method of fundamental solutions for certain biharmonic problems, J sci comput, 16, 341-371, (2001) · Zbl 0995.65116
[18] Smyrlis, Y.S.; Karageorghis, A., Technical report TR/02/2002, Technical report TR/02/2002, (2002), Department of Mathematics and Statistics, University of Cyprus Cyprus
[19] Golberg, M.A.; Chen, C.S., Discrete projection methods for integral equations, (1996), Computational Mechanics Publications Southampton
[20] Kolodziej, J.A., Applications of the boundary collocation method in applied mechanics, (2001), Wydawnictwo Politechniki Poznanskiej Poznan, In Polish
[21] Lamb, H., Hydrodynamics, (1932), University Press Cambridge · JFM 26.0868.02
[22] Batchelor, G.K., An introduction to fluid dynamics, (1967), University Press Cambridge · Zbl 0152.44402
[23] Mathon, R.; Johnston, R.L., The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM J numer anal, 14, 638-650, (1977) · Zbl 0368.65058
[24] Khokhlov, A.V., Trefftz-like numerical method for linear boundary-value problems, Commun numer meth engng, 9, 607-612, (1993) · Zbl 0781.65084
[25] Kita, E.; Kamiya, N., Trefftz method: an overview, Adv engng software, 24, 3-12, (1995) · Zbl 0984.65502
[26] Abou-Dina, M.S., Implementation of Trefftz method for the solution of some elliptic boundary value problems, Appl math comput, 127, 125-147, (2002) · Zbl 1023.65118
[27] Akella, M.R.; Kotamraju, G.R., Trefftz indirect method applied to nonlinear potential problems, Engng anal bound elem, 24, 459-465, (2000) · Zbl 1005.80009
[28] Herrera, I., Trefftz method: a general theory, Numer meth partial differ eq, 16, 561-580, (2000) · Zbl 0978.65114
[29] Reutskiy, S., A boundary method of Trefftz type with approximate trial functions, Engng anal bound elem, 26, 341-353, (2002) · Zbl 1003.65134
[30] Reutskiy, S.Y.; Tirozzi, B., Quasi-Trefftz spectral method for separable linear elliptic equations, Comput math appl, 37, 2, 47-74, (1999) · Zbl 0937.65123
[31] Chen, C.S.; Golberg, M.A.; Hon, Y.C., The method of fundamental solutions and quasi-Monte Carlo method for diffusion equations, Int J numer meth engng, 43, 1421-1436, (1998) · Zbl 0929.76098
[32] Chen, C.S.; Golberg, M.A.; Rashed, Y.F., A mesh free method for linear diffusion equations, Numer heat transfer part B, 33, 469-486, (1998)
[33] Golberg, M.A.; Chen, C.S., The method of fundamental solutions for potential, Helmholtz and diffusion problems, (), 103-176 · Zbl 0945.65130
[34] Golberg, M.A.; Chen, C.S., A mesh free method for solving non-linear reaction – diffusion equations, Comput model engng sci, 2, 87-95, (2001)
[35] Golberg, M.A.; Chen, C.S.; Muleshkov, A.S., The method of fundamental solutions for time-dependent problems, (), 377-386
[36] Partridge, P.W.; Sensale, B., The method of fundamental solutions with dual reciprocity for diffusion and diffusion – convection using subdomains, Engng anal bound elem, 24, 633-641, (2000) · Zbl 1005.76064
[37] Li, J., Mathematical justification for RBF-MFS, Engng anal bound elem, 25, 897-901, (2001) · Zbl 1014.65123
[38] Ramachandran, P.A.; Balakrishnan, K., Radial basis functions as approximate particular solutions: review of recent progress, Engng anal bound elem, 24, 575-582, (2000) · Zbl 0966.65085
[39] Balakrishnan, K.; Sureshkumar, R.; Ramachandran, P.A., An operator splitting – radial basis function method for the solution of transient nonlinear Poisson problems, Comput math appl, 43, 289-304, (2002) · Zbl 0999.65111
[40] Elansari, M.; Ouazar, D.; Cheng, A.H.D., Boundary solution of Poisson’s equation using radial basis function collocated on Gaussian quadrature nodes, Commun numer meth engng, 17, 455-464, (2001) · Zbl 0987.65129
[41] Balakrishnan, K.; Ramachandran, P.A., A particular solution Trefftz method for non-linear Poisson problems in heat and mass transfer, J comput phys, 150, 239-267, (1999) · Zbl 0926.65121
[42] Balakrishnan, K.; Ramachandran, P.A., Osculatory interpolation in the method of fundamental solutions for nonlinear Poisson problems, J comput phys, 172, 1-18, (2001) · Zbl 0992.65131
[43] Tsai, C.C.; Young, D.L.; Cheng, A.H.D., Meshless BEM for three-dimensional Stokes flows, Comput model engng sci, 3, 117-128, (2002) · Zbl 1147.76595
[44] Chen, C.S.; Brebbia, C.A.; Power, H., Dual reciprocity method using compactly supported radial basis functions, Commun numer meth engng, 15, 137-150, (1999) · Zbl 0927.65140
[45] Golberg, M.A.; Chen, C.S.; Ganesh, M., Particular solutions of 3D Helmholtz-type equations using compactly supported radial basis functions, Engng anal bound elem, 24, 539-547, (2000) · Zbl 0994.76058
[46] Chen, C.S.; Ganesh, M.; Golberg, M.A.; Cheng, A.H.D., Multilevel compact radial functions based computational schemes for some elliptic problems, Comput math appl, 43, 359-378, (2002) · Zbl 0999.65143
[47] Chen, C.S.; Golberg, M.A.; Hon, Y.C., Numerical justification of fundamental solutions and the quasi-Monte Carlo method for Poisson-type equations, Engng anal bound elem, 22, 61-69, (1998) · Zbl 0940.65133
[48] Alves CJS, Chen CS. The method of fundamental solutions adapted for a non homogeneous equation. In: Proceedings of the International Conference in Engineering and Science 2001 (ICES ’01). Tech Science Press on CD-ROM.
[49] Li, J.; Hon, Y.C.; Chen, C.S., Numerical comparisons of two meshless methods using radial basis functions, Engng anal bound elem, 26, 205-225, (2002) · Zbl 1003.65132
[50] Lazarashvili, L.; Zakradze, M., On the method of fundamental solutions and some aspects of its application, Proc razmadze math inst, 123, 41-51, (2000) · Zbl 0981.65138
[51] Gallopoulos, E.; Lee, D., Fast Laplace solver by boundary integral based domain decomposition methods, (), 141-145
[52] Balakrishnan, K.; Ramachandran, P.A., The method of fundamental solutions for linear diffusion – reaction equations, Math comput model, 31, 2-3, 221-237, (2000) · Zbl 1042.35569
[53] Cisilino AP, Pardo E. A functional integral formulation for the method of fundamental solutions. In: Denda M, Aliabadi MH, Charafi A, editors. Advances in Boundary Element Techniques II, Geneva: Hoggar; 2001, p. 13-20.
[54] Khatiashvili G, Silagadze G. On a numerical solution of two-dimensional problems of elasticity for anisotropic medium by the method of fundamental solutions. Reports of the Enlarged Sessions of Seminars of the I. Vekua Institute of Applied Mathematics, Tbilisi State University, vol. XIV, No. 3; 1999.
[55] Rajamohan, C.; Ramachandran, J., Bending of anisotropic plates in charge simulation method, Adv engng software, 30, 369-373, (1999)
[56] Fenner, R.T., A force superposition approach to plane elastic stress and strain analysis, J strain anal, 36, 517-529, (2001)
[57] Karageorghis, A., The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation, Appl math lett, 14, 837-842, (2001) · Zbl 0984.65111
[58] Kanali, C.; Murase, H.; Honami, N., Three-dimensional shape recognition using a charge simulation method to process primary image features, J agri engng res, 70, 195-208, (1998)
[59] Kanali, C.; Murase, H.; Honami, N., Shape identification using a charge simulation retina model, Math comput simul, 48, 103-118, (1998)
[60] Ismail, H.M.; Abu-Gammaz, A.R., Electric field and right-of-way analysis of kuwait high-voltage transmission systems, Electr power syst res, 50, 213-218, (1999)
[61] Vlad, S.; Mihailescu, M.; Rafiroiu, D.; Iuga, A.; Dascalescu, L., Numerical analysis of the electric field in plate-type electrostatic separators, J electrostat, 48, 217-229, (2000)
[62] Pawłowski, S., Solutions of boundary value problem approximated by fundamental solutions, J tech phys (Warsaw), 34, 161-172, (1993)
[63] Xu, W.; Zhao, Y.; Du, Y.; Kagawa, Y.; Wakatsuki, N.; Park, K.C., Electrical impedance evaluation in a conductive-dielectric half space by the charge simulation method, Engng anal bound elem, 26, 583-590, (2002) · Zbl 1011.78505
[64] Poullikkas, A.; Karageorghis, A.; Georgiou, G., The numerical solution of three dimensional Signorini problems with the method of fundamental solutions, Engng anal bound elem, 25, 221-227, (2001) · Zbl 0985.78004
[65] Poullikkas, A.; Karageorghis, A.; Georgiou, G., The method of fundamental solutions for three dimensional elastostatics problems, Comput struct, 80, 365-370, (2002)
[66] Berger, J.R.; Karageorghis, A., The method of fundamental solutions for layered elastic materials, Engng anal bound elem, 25, 877-886, (2001) · Zbl 1008.74081
[67] Skilowitz JL. Static and transient Green’s functions for diffusion in anisotropic bimaterials. MSc Thesis. Division of Engineering, Colorado School of Mines; 1998.
[68] Berger, J.R.; Tewary, V.K., Greens functions for boundary element analysis of anisotropic bimaterials, Engng anal bound elem, 25, 279-288, (2001) · Zbl 1014.74021
[69] Hwang, J.Y.; Chang, S.C., A retracted boundary integral equation for exterior acoustic problem with unique solution for all wave numbers, J acoust soc am, 90, 1167-1180, (1991)
[70] Wilton, D.T.; Mathews, I.C.; Jeans, R.A., A clarification of nonexistence problems with the superposition method, J acoust soc am, 94, 1676-1680, (1993)
[71] Benthien, W.; Schenck, H.A., Nonexistence and nonuniqueness problems associated with integral equation methods in acoustics, Comput struct, 65, 295-305, (1997) · Zbl 0918.76070
[72] Miller, R.D.; Moyer, E.T.; Huang, H.; Überall, H., A comparison between the boundary element method and the wave superposition approach for the analysis of the scattered fields from rigid bodies and elastic shells, J acoust soc am, 89, 2185-2196, (1991)
[73] Kondapalli, P.S.; Shippy, D.J.; Fairweather, G., The method of fundamental solutions for transmission and scattering of elastic waves, Comput meth appl mech engng, 96, 255-269, (1992) · Zbl 0825.73150
[74] Kondapalli, P.S.; Shippy, D.J.; Fairweather, G., Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions, J acoust soc am, 91, 1844-1854, (1992)
[75] ()
[76] ()
[77] Chow, Y.L.; Chaudhury, S.K., Non-linear optimization for field scattering and SEM problems, IEE conf publ, 195, 378-382, (1981)
[78] Komiyama, A., Multiple scattering in electromagnetic scattering by many perfectly conducting circular cylinders, Electron commun jpn, 67, 37-45, (1981)
[79] Kress, R.; Mohsen, A., On the simulation source technique for exterior problems in acoustics, Math meth appl sci, 8, 585-597, (1986) · Zbl 0626.35019
[80] Limić, N., The exterior Neumann problem for the Helmholtz equation, Glasnik matematički ser III, 36, 51-64, (1981) · Zbl 0478.35028
[81] Müller, C.; Kersten, H., Zwei klassen vollständiger funktionensysteme zur behandlung von randwertaufgaben der schwingungsgleichung δU+k2U=0, Math meth appl sci, 2, 48-67, (1980) · Zbl 0434.35028
[82] Boag, A.; Leviatan, Y.; Boag, A., Analysis of acoustic scattering from fluid cylinders using a multifilament source model, J acoust soc am, 83, 1-8, (1988)
[83] Boag, A.; Leviatan, Y.; Boag, A., Analysis of acoustic scattering from fluid bodies using a multipoint source model, IEEE trans ultrason ferroelectr freq control, 36, 119-128, (1989)
[84] Boag, A.; Leviatan, Y.; Boag, A., Analysis of two-dimensional acoustic scattering from periodic structures using a hybrid source model, J acoust soc am, 86, 387-394, (1989)
[85] Boag, A.; Leviatan, Y.; Boag, A., Analysis of three-dimensional acoustic scattering from doubly periodic structures using a source model, J acoust soc am, 91, 572-580, (1992)
[86] Murphy, J.E.; Li, G.; Chin-Bing, S.A.; King, D.B., Multifilament source model for short-range underwater acoustic problems involving penetrable Ocean bottoms, J acoust soc am, 99, 845-850, (1996)
[87] Erez, E.; Leviatan, Y., Analysis of scattering from structures containing a variety of length scales using a source-model technique, J acoust soc am, 93, 3027-3031, (1993)
[88] Leviatan, Y.; Erez, E.; Beran, M.J., A source model technique for analysis of flexural wave scattering in a heterogeneous thin plate, Quart J mech appl math, 45, 499-514, (1992) · Zbl 0769.73021
[89] Koopman, G.H.; Song, L.; Fahnline, J.B., A method for computing acoustic fields based on the principle of wave superposition, J acoust soc am, 86, 2433-2438, (1989)
[90] Song, L.; Koopman, G.H.; Fahnline, J.B., Numerical errors associated with the method of superposition for computing acoustic fields, J acoust soc am, 89, 2625-2633, (1991)
[91] Song, L.; Koopman, G.H.; Fahnline, J.B., Active control of the acoustic radiation of a vibrating structure using a superposition formulation, J acoust soc am, 89, 2786-2792, (1991)
[92] Jeans, R.; Mathews, I.C., The wave superposition method as a robust technique for computing acoustic fields, J acoust soc am, 92, 1156-1166, (1992)
[93] Fahnline, J.B.; Koopman, G.H., A numerical solution for the general radiation problem based on the combined methods of superposition and singular-value decomposition, J acoust soc am, 90, 2808-2819, (1991)
[94] Kondapalli PS. Time-harmonic solutions in acoustics and elastodynamics by the method of fundamental solutions. PhD Thesis. Department of Engineering Mechanics, University of Kentucky; 1991.
[95] Shippy, D.J.; Kondapalli, P.S.; Fairweather, G., Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions, Math comput model, 14, 74-79, (1990) · Zbl 0722.76073
[96] Caruthers, J.E.; French, J.C.; Raviprakash, G.K., Green’s function discretization for numerical solution of the Helmholtz equation, J sound vibr, 187, 553-568, (1995) · Zbl 1232.76037
[97] Caruthers JE, French JC, Raviprakash GK. Recent developments concerning a new discretization method for the Helmholtz equation. Proceedings of the First CEAS/AIAA Aeroacoustics Conference, Munich, Germany, vol. II; 1995. p. 819-826.
[98] Stepanishen, P.R.; Ramakrishna, S., Acoustic radiation from cylinders with a plane of symmetry using internal multipole line source distributions. I., J acoust soc am, 93, 658-672, (1993)
[99] Ramakrishna, S.; Stepanishen, P.R., Acoustic scattering from cylinders with a plane of symmetry using internal multipole line source distributions. II, J acoust soc am, 93, 673-682, (1993)
[100] Stepanishen, P.R.; Ramakrishna, S., Acoustic radiation impedances and impulse responses for elliptical cylinders using internal source density and singular value decomposition methods, J sound vibr, 176, 49-68, (1994) · Zbl 0945.76569
[101] Johnson, M.E.; Elliot, S.J.; Baek, K.H.; Garcia-Bonito, J., An equivalent source technique for calculating the sound field inside an enclosure containing scattering objects, J acoust soc am, 104, 1221-1231, (1998)
[102] Ochmann M. Calculation of sound radiation from complex structures using the multipole radiator synthesis with optimized source locations. In: Crocker M, editor. Proceedings of the Second International Congress on Recent Developments in Air- and Structure-Borne Sound and Vibration, Auburn; 1992. p. 1187-94.
[103] Doicu, A.; Eremin, Y.; Wriedt, T., Non-axisymmetric models for light scattering from a particle on or near a plane surface, Opt commun, 182, 281-288, (2000)
[104] Doicu, A.; Eremin, Y.; Wriedt, T., Scattering of evanescent waves by a particle on or near a plane surface, Comput phys commun, 134, 1-10, (2001) · Zbl 0972.78519
[105] Doicu, A.; Eremin, Y.; Wriedt, T., Scattering of evanescent waves by a sensor tip near a plane surface, Opt commun, 190, 5-12, (2001) · Zbl 0972.78519
[106] Eremin, Y.; Orlov, N.V.; Rozenberg, V.I., Multiple electromagnetic scattering by a linear array of electrified raindrops, J atmosph terrest phys, 57, 311-319, (1995)
[107] Eremin, Y.; Orlov, N., Modeling of light scattering by non-spherical particles based on discrete sources method, J quant spectrosc radiat transfer, 60, 451-462, (1998)
[108] Eremin, Y.; Stover, J.C.; Grishina, N.V., Discrete sources method for light scattering analysis from 3D asymmetrical features on a substrate, J quant spectrosc radiat transfer, 70, 421-431, (2001)
[109] Eremin, Y.; Sveshnikov, A.G., Discrete sources method in electromagnetic scattering problems, Electromagnetics, 13, 1-22, (1993)
[110] Shifman, Y.; Friedman, M.; Leviatan, Y., Analysis of electromagnetic scattering by cylinders with edges using a hybrid moment method, IEE proc microwaves, antennas propag, 144, 235-240, (1997)
[111] Maystre, D.; Saillard, M.; Tayeb, G., Special methods of wave diffraction, (), 366-383
[112] Pao, Y.H.; Varatharajulu, V., Huygens’ principle, radiation conditions, and integral formulas for the scattering of elastic waves, J acoust soc am, 59, 1361-1371, (1976) · Zbl 0348.73018
[113] Kobayashi S, Nishimura N. Green’s tensors for elastic half-spaces—an application of boundary integral equation method. Memoirs of the Faculty of Engineering, Kyoto University, vol. 42; 1980. p. 228-41.
[114] Pan, L.; Rizzo, F.; Martin, P.A., Some efficient boundary integral strategies for time-harmonic wave problems in an elastic halfspace, Comput meth appl mech engng, 164, 207-221, (1998) · Zbl 0981.74075
[115] Seybert, A.F.; Soenarko, B.; Rizzo, F.J.; Shippy, D.J., A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions, J acoust soc am, 80, 1241-1247, (1986)
[116] Karageorghis, A.; Fairweather, G., The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems, J acoust soc am, 104, 3212-3218, (1998)
[117] Gupta AK. The boundary integral equation method for potential problems involving axisymmetric geometry and arbitrary boundary conditions. MS Thesis. Department of Engineering Mechanics, University of Kentucky; 1979.
[118] Rizzo, F.J.; Shippy, D.J., A boundary integral approach to potential and elasticity problems for axisymmetric bodies with arbitrary boundary conditions, Mech res commun, 6, 99-103, (1979) · Zbl 0409.73081
[119] Karageorghis, A.; Fairweather, G., The method of fundamental solutions for axisymmetric potential problems, Int J numer meth engng, 44, 1653-1669, (1999) · Zbl 0932.74078
[120] Karageorghis, A.; Fairweather, G., The method of fundamental solutions for axisymmetric elasticity problems, Comput mech, 25, 524-532, (2000) · Zbl 1011.74005
[121] Igarashi, H.; Honma, T., On axially and helically symmetric fundamental solutions to modified Helmholtz-type equations, Appl math model, 16, 314-319, (1992) · Zbl 0792.35002
[122] Tezer-Sezgin, M.; Dost, S., On the fundamental solutions of the axisymmetric Helmholtz-type equations, Appl math model, 17, 47-51, (1993) · Zbl 0796.35029
[123] Tsuchimoto, M.; Miya, K.; Honma, T.; Igarashi, H., Fundamental solutions of the axisymmetric Helmholtz-type equations, Appl math model, 14, 605-611, (1990) · Zbl 0714.65087
[124] Ang, W.T.; Kusuma, J.; Clements, D., A boundary element method for a second order elliptic partial differential equation with variable coefficients, Engng anal bound elem, 18, 311-316, (1996)
[125] Clements, D.L., Fundamental solutions for second order linear elliptic partial differential equations, Comput mech, 22, 26-31, (1998) · Zbl 0914.35003
[126] Rencis, J.J.; Huang, Q., Fundamental functions for a two-dimensional microelastic body, Engng anal bound elem, 23, 787-790, (1999) · Zbl 0961.74071
[127] Westphal, T.; Andrä, H.; Schnack, E., Some fundamental solutions for the Kirchhoff, Reissner and Mindlin plates and a unified BEM formulation, Engng anal bound elem, 25, 129-139, (2001) · Zbl 1114.74498
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.