Mostafazadeh, Ali Pseudo-Hermiticity versus \(PT\)-symmetry. II: A complete characterization of non-Hermitian Hamiltonians with a real spctrum. (English) Zbl 1060.81022 J. Math. Phys. 43, No. 5, 2814-2816 (2002). Summary: We give a necessary and sufficient condition for the reality of the spectrum of a non-Hermitian Hamiltonian admitting a complete set of biorthonormal eigenvectors. For Part I, see ibid. 43, No. 1, 205–214 (2002; Zbl 1059.81070), Part III, ibid. 43, No. 8, 3944–3951 (2002; Zbl 1061.81075) Cited in 2 ReviewsCited in 84 Documents MSC: 81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis 81U15 Exactly and quasi-solvable systems arising in quantum theory Citations:Zbl 1059.81070; Zbl 1061.81075 PDF BibTeX XML Cite \textit{A. Mostafazadeh}, J. Math. Phys. 43, No. 5, 2814--2816 (2002; Zbl 1060.81022) Full Text: DOI arXiv OpenURL References: [1] Mostafazadeh, J. Math. Phys. 43 pp 205– (2002) [2] Bender, Phys. Rev. Lett. 80 pp 5243– (1998) [3] Fernández, J. Phys. A 31 pp 10105– (1998) [4] Cannata, Phys. Lett. A 246 pp 219– (1998) [5] Bender, J. Math. Phys. 40 pp 2201– (1999) [6] Bender, Phys. Lett. A 252 pp 272– (1999) [7] Bender, J. Math. Phys. 40 pp 4616– (1999) [8] Mezincescu, J. Phys. A 33 pp 4911– (2000) [9] Delabaere, J. Phys. A 33 pp 8771– (2000) [10] Bagchi, J. Phys. A 33 pp L1– (2000) [11] Khare, Phys. Lett. A 272 pp 53– (2000) [12] Bagchi, Phys. Lett. A 269 pp 79– (2000) [13] Znojil, Phys. Lett. B 483 pp 284– (2000) [14] Znojil, J. Phys. A 34 pp 1793– (2001) [15] Bender, Phys. Lett. A 281 pp 311– (2001) [16] Cannata, Phys. Lett. A 281 pp 305– (2001) [17] Ahmed, Phys. Lett. A 282 pp 343– (2001) [18] Phys. Lett. A 284 pp 231– (2001) [19] Phys. Lett. A 290 pp 19– (2001) [20] Dorey [21] Znojil [22] Znojil [23] Japaridze [24] Kretschmer · JFM 51.0032.06 [25] Wong, J. Math. Phys. 8 pp 2039– (1967) [26] Faisal, J. Phys. B 14 pp 3603– (1981) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.