Weak pseudo-Hermiticity and antilinear commutant. (English) Zbl 1060.81026

Summary: We inquire into some properties of diagonalizable pseudo-Hermitian operators, showing that their definition can be relaxed and that the pseudo-Hermiticity property is strictly connected with the existence of an antilinear symmetry. This result is then illustrated by considering the particular case of the complex Morse potential.


81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)
47N50 Applications of operator theory in the physical sciences
81U15 Exactly and quasi-solvable systems arising in quantum theory
Full Text: DOI arXiv


[1] DOI: 10.1103/PhysRevLett.80.5243 · Zbl 0947.81018
[2] See, for instance, M. Znojil, arXiv: quant-ph/0103054 (2001), and references therein.
[3] DOI: 10.1098/rspa.1942.0023 · Zbl 0060.45501
[4] DOI: 10.1103/RevModPhys.15.175 · Zbl 0060.45504
[5] DOI: 10.1016/0550-3213(69)90098-4 · Zbl 0165.58203
[6] DOI: 10.1063/1.1418246 · Zbl 1059.81070
[7] A. Mostafazadeh, arXiv: math-ph/0110016 (2001).
[8] Ahmed Z., Phys. Lett. A 290 pp 19– (2001) · Zbl 1020.81016
[9] Faisal F. H. M., J. Phys. B 14 pp 3603– (1981)
[10] G. S. Japaridze, ”Space of state vectors in PT symmetrized quantum mechanics,” arXiv: quant-ph/0104077 (2001).
[11] DOI: 10.1063/1.1489072 · Zbl 1061.81075
[12] Bagchi B., Phys. Lett. A 273 pp 285– (2000) · Zbl 1050.81546
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.