×

zbMATH — the first resource for mathematics

Approximate Riemann solver for the two-fluid plasma model. (English) Zbl 1061.76526
Summary: An algorithm is presented for the simulation of plasma dynamics using the two-fluid plasma model. The two-fluid plasma model is more general than the magnetohydrodynamic (MHD) model often used for plasma dynamic simulations. The two-fluid equations are derived in divergence form and an approximate Riemann solver is developed to compute the fluxes of the electron and ion fluids at the computational cell interfaces and an upwind characteristic-based solver to compute the electromagnetic fields. The source terms that couple the fluids and fields are treated implicitly to relax the stiffness. The algorithm is validated with the coplanar Riemann problem, Langmuir plasma oscillations, and the electromagnetic shock problem that has been simulated with the MHD plasma model. A numerical dispersion relation is also presented that demonstrates agreement with analytical plasma waves.

MSC:
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76M12 Finite volume methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chang, J.S.; Cooper, G., J. comput. phys., 6, 1, (1970)
[2] Bell, A.R., Astrophys. space sci., 256, 13, (1998)
[3] Cheng, C.Z.; Knorr, G., J. comput. phys., 22, 330, (1976)
[4] Ruhl, H.; Mulser, P., Phys. lett. A, 205, 388, (1995)
[5] Chacón, L.; Barnes, D.C.; Knoll, D.A.; Miley, G.H., J. comput. phys., 157, 618, (2000)
[6] Chacón, L.; Barnes, D.C.; Knoll, D.A.; Miley, G.H., J. comput. phys., 157, 654, (2000)
[7] Freidberg, J.P., Rev. mod. phys., 54, 801, (1982)
[8] Lindemuth, I.R., J. comput. phys., 18, 119, (1975)
[9] Peterkin, R.E.; Frese, M.H.; Sovinec, C.R., J. comput. phys., 140, 148, (1998)
[10] Glasser, A.H.; Sovinec, C.R.; Nebel, R.A.; Gianakon, T.A.; Plimpton, S.J.; Chu, M.S.; Schnack, D.D., Plasma phys. control. fusion, 41, A747, (1999)
[11] Brio, M.; Wu, C.C., J. comput. phys., 75, 400, (1988)
[12] Zachery, A.L.; Colella, P., J. comput. phys., 99, 341, (1992)
[13] Jones, O.S.; Shumlak, U.; Eberhardt, D.S., J. comput. phys., 130, 231, (1997)
[14] Ishida, A.; Momota, H.; Steinhauer, L.C., Phys. fluids, 31, 3024, (1988)
[15] Iwasawa, N.; Ishida, A.; Steinhauer, L.C., Phys. plasmas, 7, 931, (2000)
[16] Otto, A., J. geophys. res., 106, A3, 3751, (2001)
[17] Hesse, M.; Birn, J.; Kuznetsova, M., J. geophys. res., 106, A3, 3721, (2001)
[18] Harned, D.; Mikic, Z., J. comput. phys., 83, 1, (1989)
[19] Roe, P.L., J. comput. phys., 43, 357, (1981)
[20] DeZeeuw, D.L.; Gombosi, T.I.; Groth, C.P.T.; Powell, K.G.; Stout, Q.F., IEEE trans. plasma sci., 28, 1956, (2000)
[21] Steger, J.L.; Warming, R.F., J. comput. phys., 40, 263, (1981)
[22] Yoon, S.; Jameson, A., Aiaa j., 26, 1025, (1988)
[23] Brackbill, J.U.; Barnes, D.C., J. comput. phys., 35, 426, (1980)
[24] Yee, K.S., IEEE trans. antennas propag., 14, 302, (1966)
[25] Morse, R.L.; Nielson, C.W., Phys. fluids, 14, 830, (1971)
[26] Shang, J.S.; Fithen, R.M., J. comput. phys., 125, 378, (1996)
[27] Schneider, R.; Munz, C.D., Int. J. numer. model., 8, 399, (1995)
[28] Bretones, A.R.; Monorchio, A.; Manara, G.; Gomez-Martin, R.; Mittra, R., Electron. lett., 36, 506, (2000)
[29] Jandhyala, V.; Micheilssen, E.; Balasubramaniam, S.; Chew, W.C., IEEE trans. geosci. remote sensing, 36, 738, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.