Huang, Yu Growth rates of total variations of snapshots of the 1D linear wave equation with composite nonlinear boundary reflection relations. (English) Zbl 1062.35035 Int. J. Bifurcation Chaos Appl. Sci. Eng. 13, No. 5, 1183-1195 (2003). Cited in 33 Documents MSC: 35L20 Initial-boundary value problems for second-order hyperbolic equations 37L99 Infinite-dimensional dissipative dynamical systems Keywords:Chaos; van der Pol nonlinearity; total variation; energy-pumping condition; Riemann invariants Citations:Zbl 0981.35033 PDF BibTeX XML Cite \textit{Y. Huang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 13, No. 5, 1183--1195 (2003; Zbl 1062.35035) Full Text: DOI OpenURL References: [1] Apostol T. M., Mathematical Analysis (1957) · Zbl 0077.05501 [2] Block L., Proc. Amer. Math. Soc. 72 pp 576– [3] DOI: 10.1090/S0002-9947-98-02022-4 · Zbl 0916.35065 [4] DOI: 10.1142/S0218127498000280 · Zbl 0938.35088 [5] DOI: 10.1142/S0218127498000292 · Zbl 0938.35089 [6] DOI: 10.1063/1.532670 · Zbl 0959.37027 [7] G. Chen, Control of Nonlinear Distributed Parameter System, Lecture Notes in Pure and Applied Mathematics Series 218, eds. G. Chen, I. Lascieka and J. Zhou (Marcel Dekker, NY, 2001) pp. 15–42. [8] Chen G., Int. J. Bifurcation and Chaos [9] Devaney R. L., An Introduction to Chaotic Dynamical Systems (1989) · Zbl 0695.58002 [10] Huang T., Int. J. Bifurcation and Chaos This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.