×

zbMATH — the first resource for mathematics

Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. (English) Zbl 1062.37077
Summary: A broad set of sufficient conditions consisting of systems of linear partial differential equations is presented which guarantees that the Wronskian determinant solves the Korteweg-de Vries equation in the bilinear form. A systematical analysis is made for solving the resultant linear systems of second-order and third-order partial differential equations, along with solution formulas for their representative systems. The key technique is to apply a variation of parameters in solving the involved non-homogeneous partial differential equations. The obtained solution formulas provide us with a comprehensive approach to construct the existing solutions and many new solutions including rational solutions, solitons, positons, negatons, breathers, complexitons and interaction solutions of the Korteweg-de Vries equation.

MSC:
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q53 KdV equations (Korteweg-de Vries equations)
35Q51 Soliton equations
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mark J. Ablowitz, David J. Kaup, Alan C. Newell, and Harvey Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math. 53 (1974), no. 4, 249 – 315. · Zbl 0408.35068
[2] M. J. Ablowitz and J. Satsuma, Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys. 19 (1978), no. 10, 2180 – 2186. · Zbl 0418.35022
[3] Mark J. Ablowitz and Harvey Segur, Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. · Zbl 0472.35002
[4] M. Adler and J. Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys. 61 (1978), no. 1, 1 – 30. · Zbl 0428.35067
[5] V. A. Arkad\(^{\prime}\)ev, A. K. Pogrebkov, and M. K. Polivanov, Singular solutions of the KdV equation and the method of the inverse problem, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 133 (1984), 17 – 37 (Russian, with English summary). Differential geometry, Lie groups and mechanics, VI. · Zbl 0571.35094
[6] D. K. Arrowsmith and C. M. Place, Dynamical systems, Chapman and Hall Mathematics Series, Chapman & Hall, London, 1992. Differential equations, maps and chaotic behaviour. · Zbl 0754.34001
[7] D. J. Benney and D. J. Roskes, Wave instabilities, Studies in Appl. Math. 48 (1969), 377-385. · Zbl 0216.52904
[8] A. C. Bryan and A. E. G. Stuart, Representations of the multisoliton solutions of the Korteweg-de Vries equation, Nonlinear Anal. 22 (1994), no. 5, 561 – 566. · Zbl 0805.35111
[9] Robin K. Bullough and Philip J. Caudrey , Solitons, Topics in Current Physics, vol. 17, Springer-Verlag, Berlin-New York, 1980. · Zbl 0428.00010
[10] Nigel J. Burroughs, A loop algebra co-adjoint orbit construction of the generalized KdV hierarchies, Nonlinearity 6 (1993), no. 4, 583 – 616. · Zbl 0780.35099
[11] A. Davey and K. Stewartson, On three-dimensional packets of surface waves, Proc. Roy. Soc. London Ser. A 338 (1974), 101 – 110. · Zbl 0282.76008
[12] P. G. Drazin and R. S. Johnson, Solitons: an introduction, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1989. · Zbl 0661.35001
[13] N. C. Freeman and J. J. C. Nimmo, Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique, Phys. Lett. A 95 (1983), no. 1, 1 – 3. · Zbl 0588.35077
[14] R. Hirota, Exact solution of the Korteweg de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971), 1192-1194. · Zbl 1168.35423
[15] Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Pure and Applied Mathematics, Vol. 60. · Zbl 0309.34001
[16] M. Jaworski, Breather-like solution of the Korteweg-de Vries equation, Phys. Lett. A 104 (1984), no. 5, 245 – 247.
[17] B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl. 15 (1970), 539-541. · Zbl 0217.25004
[18] M. Kovalyov, Basic motions of the Korteweg-de Vries equation, Nonlinear Anal. 31 (1998), no. 5-6, 599 – 619. · Zbl 0886.35134
[19] Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467 – 490. · Zbl 0162.41103
[20] Wen Xiu Ma, Complexiton solutions to the Korteweg-de Vries equation, Phys. Lett. A 301 (2002), no. 1-2, 35 – 44. · Zbl 0997.35066
[21] Franco Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), no. 5, 1156 – 1162. · Zbl 0383.35065
[22] V. B. Matveev, Generalized Wronskian formula for solutions of the KdV equations: first applications, Phys. Lett. A 166 (1992), no. 3-4, 205 – 208. , https://doi.org/10.1016/0375-9601(92)90362-P V. B. Matveev, Erratum: ”Generalized Wronskian formula for solutions of the KdV equations: first applications”, Phys. Lett. A 168 (1992), no. 5-6, 463. , https://doi.org/10.1016/0375-9601(92)90537-V V. B. Matveev, Positon-positon and soliton-positon collisions: KdV case, Phys. Lett. A 166 (1992), no. 3-4, 209 – 212.
[23] V. B. Matveev and M. A. Salle, Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991. · Zbl 0744.35045
[24] Robert M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Mathematical Phys. 9 (1968), 1202 – 1204. , https://doi.org/10.1063/1.1664700 Robert M. Miura, Clifford S. Gardner, and Martin D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Mathematical Phys. 9 (1968), 1204 – 1209. · Zbl 0283.35019
[25] C. Rasinariu, U. Sukhatme, and Avinash Khare, Negaton and positon solutions of the KdV and mKdV hierarchy, J. Phys. A 29 (1996), no. 8, 1803 – 1823. · Zbl 0914.35119
[26] J. Satsuma, A Wronskian representation of \(N\)-soliton solutions of nonlinear evolution equations, J. Phys. Soc. Jpn. 46 (1979) 359-360.
[27] Graeme Segal and George Wilson, Loop groups and equations of KdV type, Inst. Hautes √Čtudes Sci. Publ. Math. 61 (1985), 5 – 65. · Zbl 0592.35112
[28] James C. Robinson, Infinite-dimensional dynamical systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. An introduction to dissipative parabolic PDEs and the theory of global attractors. George R. Sell and Yuncheng You, Dynamics of evolutionary equations, Applied Mathematical Sciences, vol. 143, Springer-Verlag, New York, 2002. Vladimir V. Chepyzhov and Mark I. Vishik, Attractors for equations of mathematical physics, American Mathematical Society Colloquium Publications, vol. 49, American Mathematical Society, Providence, RI, 2002. · Zbl 0980.35001
[29] S. Sirianunpiboon, S. D. Howard, and S. K. Roy, A note on the Wronskian form of solutions of the KdV equation, Phys. Lett. A 134 (1988), no. 1, 31 – 33.
[30] Yuncheng You, Global dynamics of dissipative generalized Korteweg-de Vries equations, Chinese Ann. Math. Ser. B 17 (1996), no. 4, 389 – 402. A Chinese summary appears in Chinese Ann. Math. Ser. A 17 (1996), no. 4, 651. · Zbl 0876.35107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.