×

zbMATH — the first resource for mathematics

Functional coefficient regression models for non-linear time series: a polynomial spline approach. (English) Zbl 1062.62184
This paper deals with functional coefficient regression model described as follows. \(\{Y_{t},X_{t},U_{t}\}\) are jointly strictly stationary processes with \(X_{t}=(X_{t1},\ldots, X_{td})\) taking values in \(R^{d}\) and \(U_{t}\) in \(R\). Let \(E(Y_{t}^2)<\infty\). The multivariate regression function is defined as \(f(x,u)=E(Y_{t}| X_{t}=x,U_{t}=u)\). The functional coefficient regression model requires that the regression function has the form \(f(x,u)=\sum_{j=1}^{d}a_{j}(u)x_{j}\), where \(a_{j}(\cdot)\) are measurable functions from \(R\) to \(R\) and \(x=(x_1,\dots, x_{d})\).
The authors propose a global smoothing method based on polynomial splines for estimation of the functional coefficient regression models for nonlinear time series. Different coefficient functions are allowed to have different smoothing parameters. Consistency and the rate of convergence of the spline estimates are established. Methods for automatic selection of the threshold variable and significant variables are discussed. The authors propose a method to produce multi-step-ahead forecasts, including point forecasts, interval forecasts and density forecasts using the estimated model. Two real data examples, US GNP and Dutch guilder-US dollar exchange rate time series, are used to illustrate the proposed method.

MSC:
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G08 Nonparametric regression and quantile regression
62M20 Inference from stochastic processes and prediction
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1109/TAC.1974.1100705 · Zbl 0314.62039
[2] DOI: 10.1198/07350010152596718 · Zbl 04569369
[3] Boor C., A practical guide to splines (1978) · Zbl 0406.41003
[4] Bosq D., Nonparametric statistics for stochastic processes: estimation and prediction (1998) · Zbl 0902.62099
[5] Cai Z., Econ. Theory 16 pp 465– (2000)
[6] Cai Z., J. Amer. Statist. Assoc. 95 pp 941– (2000)
[7] Chen R., J. Time Ser. Anal. 22 pp 151– (2001)
[8] Chen R., J. Amer. Statist. Assoc. 88 pp 298– (1993)
[9] DOI: 10.1198/016214501753168280 · Zbl 1018.62034
[10] DOI: 10.1016/S0169-2070(97)00017-4
[11] DOI: 10.1002/1099-131X(200007)19:4<255::AID-FOR773>3.0.CO;2-G
[12] Dawid A. P., J. Roy. Statist. Soc. Ser. A 147 pp 278– (1984)
[13] DeVore R. A., Constructive approximation (1993) · Zbl 0797.41016
[14] Diebold F. X., Int. Econ. Rev. 39 pp 863– (1998)
[15] Efron B., An introduction to the bootstrap (1993) · Zbl 0835.62038
[16] Fan J., Local polynomial modeling and its applications (1996)
[17] Fan J., Ann. Statist. 27 pp 1491– (1999)
[18] Fan J., J. Roy. Statist. Soc. Ser. B 62 pp 303– (2000)
[19] Franses P. H., Nonlinear time series models in empirical finance (2000)
[20] Friedman J. H., Ann. Statist. 19 pp 1– (1991)
[21] Hansen M. H., Statist. Sci. 17 pp 2– (2002)
[22] Hastie T. J., J. Roy. Statist. Soc. Ser. B 55 pp 757– (1993)
[23] Haggan V., Biometrika 68 pp 189– (1981)
[24] Hardle W., Int. Statist. Rev. 65 pp 49– (1997)
[25] Hoover D. R., Biometrika 85 pp 809– (1998)
[26] DOI: 10.1214/aos/1030563984 · Zbl 0930.62042
[27] Huang J. Z., Statist. Sinica 11 pp 173– (2001)
[28] Huang J. Z., Biometrika 89 pp 111– (2002)
[29] Hurvich C. M., Biometrika 76 pp 297– (1989)
[30] Lewis P. A. W., J. Amer. Statist. Assoc. 86 pp 864– (1991)
[31] Ozaki T., J. Time Ser. Anal. 3 pp 29– (1982)
[32] Potter S. M., J. Appl. Econ. 10 pp 109– (1995)
[33] Schwarz G., Ann. Statist. 6 pp 461– (1978)
[34] Schumaker L. L., Spline functions: basic theory (1981) · Zbl 0449.41004
[35] Stone C. J., Ann. Statist. 22 pp 18– (1994)
[36] Stone C. J., J. Statist. Plann. Inference 108 pp 219– (2002)
[37] DOI: 10.1214/aos/1031594728 · Zbl 0924.62036
[38] Tiao G. C., J. Forecasting 13 pp 109– (1994)
[39] Tjostheim D., J. Amer. Statist. Assoc. 89 pp 1398– (1994)
[40] Tong H., Nonlinear time series: a dynamical system approach (1990) · Zbl 0716.62085
[41] Tong H., Scand. J. Statist. 22 pp 399– (1995)
[42] Truong Y., Ann. Inst. Statist. Math. 46 pp 279– (1994)
[43] Truong Y., Ann. Statist. 20 pp 77– (1992)
[44] DOI: 10.1111/1467-9892.00193 · Zbl 0974.62077
[45] DOI: 10.1111/1467-9892.00159 · Zbl 0932.62106
[46] Wu C. O., J. Amer. Statist. Assoc. 93 pp 1388– (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.