Second-order quasilinear oscillation with impulses. (English) Zbl 1063.34004

The author considers the second-order impulsive differential equation \[ \biggl( r(t)\bigl| x'(t)\bigr|^{\alpha-1} x'(t)\biggr)'+ f \bigl(t, x(t)\bigr)=0, \quad t\geq t_0,\;t\neq t_k,\;k=1,2,3,\dots \]
\[ x(t_k^+)= g_k \bigl(x(t_k)\bigr),\;x'(t^+_k)=h_k\bigl(x'(t_k)\bigr),\;k=1,2,3, \dots \]
\[ x(t^+_0)=x_0,\;x'(t^+_0)= x'(t_0), \]
\[ 0\leq t_0<t_1 <\cdots<t_k< \dots,\;\lim t_k=\infty\;(k\to\infty). \] Sufficiently conditions for every solution to be oscillatory are derived.


34A37 Ordinary differential equations with impulses
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
Full Text: DOI


[1] Bainov, D.D.; Simeonov, P.S., Systems with impulse effect stability, theory and applications, (1989), Ellis Horwood Chichester · Zbl 0676.34035
[2] Bainov, D.D.; Simeonov, P.S., Impulsive differential equations: periodic solutions and applications, (1993), Longman Harlow · Zbl 0793.34011
[3] Chen, Y.; Feng, W., Oscillation of second order nonlinear ODE with impulses, J. math. anal. appl., 210, 150-169, (1997) · Zbl 0877.34014
[4] Luo, J.; Shen, J., Lyapunov-Razumikhin methods for impulsive functional differential equations, Communcation in applied analysis, 3, 171-188, (1999) · Zbl 0924.34066
[5] Luo, J.; Shen, J., Asymptotic behavior of forced nonlinear delay differential equations with impulses, Acta Mathematica sinica, English series, 4, 565-572, (2000) · Zbl 0971.34073
[6] Gopalsamy, K., Stability and oscillation in delay equation of population dynamics, (1992), Kluwer Academic Dordrecht · Zbl 0752.34039
[7] Gyori, I.; Ladas, G., Oscillation theory of delay differential equation with applications, (1991), Clarendon Oxford · Zbl 0780.34048
[8] Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S., Theory of impulsive differential equations, (1989), World Scientific Singapore · Zbl 0719.34002
[9] Agarwal, R.P.; Wong, P.J., Oscillatory behavior of solution of certain second order nonlinear differential equations, J. math. anal. appl., 198, 337-354, (1996) · Zbl 0855.34039
[10] Elbert, A.; Kusano, T., Oscillation and nonoscillation theorems for a class of second order quasilinear differential equations, Acta math. Hungary, 56, 325-336, (1990) · Zbl 0732.34035
[11] Kitano, M.; Kusano, T., On a class of second order quasilinear ordinary differential equations, Hiroshima math. J., 25, 321-355, (1995) · Zbl 0835.34034
[12] Kusano, T.; Yoshida, N., Nonoscillation theorem for a class of quasilinear differential equations of second order, J. math. anal. appl., 189, 115-127, (1995) · Zbl 0823.34039
[13] Wang, J., On second order quasilinear oscillations, Funkcialaj ekvacioj, 41, 25-54, (1998) · Zbl 1140.34356
[14] Hardy, G.H.; Littlewood, J.E.; Polya, G., Inequalities, (1988), Cambridge University Press Cambridge · Zbl 0634.26008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.