zbMATH — the first resource for mathematics

Variable separation solutions obtained from Darboux transformations for the asymmetric Nizhnik-Novikov-Veselov system. (English) Zbl 1063.35135
Summary: The use of a seed solution with some arbitrary functions for the asymmetric Nizhnik-Novikov-Veselov system in the first step Darboux transformation yields the variable separable solutions with two space-variable separated functions. The more variable separated functions which are not arbitrary can be introduced by using the Darboux transformation repeatedly. The \(N\)th step Darboux transformation (for arbitrary \(N\)) with arbitrary number of space-variable separated functions is explicitly written down by means of the Pfaffian. The “universal” variable separation formula which is valid for a diversity of (2 + 1)-dimensional integrable systems can be obtained from a particular reduction of the solutions constructed from the second step Darboux transformation. A new saddle-type ring soliton solution with completely elastic interaction and nonzero phase shifts is also studied in this paper.

35Q53 KdV equations (Korteweg-de Vries equations)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
Full Text: DOI
[1] Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M., Phys. rev. lett., 19, 1095, (1976)
[2] Hirota, R., Phys. rev. lett., 27, 1192, (1971)
[3] Olver, P.J., Application of Lie group to differential equation, (1986), Springer New York · Zbl 0656.58039
[4] Lamb, G.L., J. math. phys., 15, 2157, (1974)
[5] Konno, K.; Wadati, M., Prog. theor. phys., 52, 1652, (1975)
[6] Wahlquist, H.D.; Estabrook, F.B., Phys. rev. lett., 23, 1386, (1973)
[7] Wadati, M.; Toda, M., J. phys. soc. jpn., 22, 431, (1972)
[8] Cao, C.W.; Cheng, Y.; Li, Y.S.; Konopelchenko, B.G.; Sidorenko, V.; Strampp, W.; Lou, S.Y.; Chen, L.L., Sci. China A, Phys. lett. A, Phys. lett. A, J. math. phys., 40, 6491, (1999)
[9] Matveev, V.B.; Salle, M.A., Darboux transformations and solitons, (1991), Springer Berlin · Zbl 0744.35045
[10] Wadati, M.; Sanuki, H.; Konno, K., Prog. theor. phys., 53, 419, (1975)
[11] Gu, C.H.; Hu, H.S.; Zhou, Z.X., Darboux transformation in soliton theory and its geometric applications, (1999), Shanghai Science and Technical Publishers
[12] Rogers, C.; Schief, W.K., Bäcklund and Darboux transformations geometry and modern applications in soliton theory, (2002), Cambridge Texts in Applied Mathematics Cambridge University Press · Zbl 1019.53002
[13] Tang, X.Y.; Lou, S.Y.; Zhang, Y., Phys. rev. E, 66, 0466001, (2002)
[14] Lou, S.Y.; Lu, J.Z.; Lou, S.Y., J. phys. A: math. gen., Phys. scr., 65, 7, (2002)
[15] Lou, S.Y., Phys. lett. A, 277, 94, (2000)
[16] Lou, S.Y.; Ruan, H.Y., J. phys. A: math. gen., 34, 305, (2001)
[17] Ruan, H.Y.; Chen, Y.X., Acta phys. sin., 4, 586, (2001), (in Chinese)
[18] Tang, X.Y.; Lou, S.Y.; Tang, X.Y.; Chen, C.L.; Lou, S.Y., Chaos solitons & fractals, J. phys. A: math. gen., 35, L293, (2002)
[19] Lou, S.Y., J. phys. A: math. gen., 35, 10619, (2002)
[20] Tang, X.Y.; Lou, S.Y., Commun. theor. phys., 38, 1, (2002)
[21] Lou, S.Y.; Tang, X.Y.; Chen, C.L.; Lin, J.; Qian, X.M.; Zhang, S.L., Mod. phys. lett. B., 16, 1075, (2002)
[22] Huang, W.H.; Zhang, J.F., Chinese phys., 11, 1101, (2002)
[23] Zhang, J.; Huang, W.; Zheng, C., Acta phys. sin., 51, 2676, (2002)
[24] Lou, S.Y.; Chen, C.L.; Tang, X.Y., J. math. phys., 43, 4078, (2002)
[25] Lou, S.Y., J. phys. A: math. gen., 36, 3877, (2003)
[26] Qian XM, Lou SY, Hu XB. Preprint: nlin.SI/0210011; 2002
[27] Hu, H.C.; Lou, S.Y.; Liu, Q.P., Chin. phys. lett., 20, 1413, (2003)
[28] Boiti, M.; Leon, J.J.P.; Manna, M.; Pempinelli, F., Inverse probl., 2, 271, (1986)
[29] Lou, S.Y.; Hu, X.B., J. math. phys., 38, 6401, (1997)
[30] Estévez, P.G.; Leble, S., Inverse probl., 11, 925, (1996)
[31] Ablowitz, M.J.; Clarkson, P.A., ()
[32] Leble, S.B.; Ustinov, N.V., Inverse problems, 10, 617, (1991) · Zbl 0806.35170
[33] Hirota, R.; Satsma, J., J. phys. soc. jpn., 40, 611, (1994)
[34] Clarkson, P.A.; Mansfield, E.L., Nonlinearity, 7, 795, (1994)
[35] Lou, S.Y.; Tang, X.Y.; Lin, J., J. math. phys., 41, 8286, (2000)
[36] Radha, R.; Lakshmanan, M.; Lou, S.Y., J. math. phys., J. phys. A: math. gen., 29, 5989, (1996)
[37] Estevez, P.G.; Leble, S.B., Acta appl. math., 39, 277, (1995)
[38] Tang, X.Y.; Lou, S.Y.; Tang, X.Y.; Lou, S.Y., Commun. theor. phys., J. math. phys., 44, 4000, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.