zbMATH — the first resource for mathematics

Multiple summing operators on \(C(K)\) spaces. (English) Zbl 1063.46032
Let \(X\) be a Banach space and \(B_X\) be its unit ball. The weak \(p\)-norm of a finite family \((x_i)_{i=1}^m \subseteq X\) is denoted by \(w_p(x_i)\). The authors consider the Banach spaces \(\Pi_{(q;p_1,\ldots , p_n)}^n(X_1,\ldots,X_n;Y)\) of all multiple \((q;p_1,\ldots , p_n)\)-summing multilinear operators for Banach spaces \(X_1,\ldots,X_n,Y\) and \(1\leq q,p_1,\ldots , p_n < \infty \). A continuous multilinear operator \(T:X_1 \times \ldots \times X_n \rightarrow Y\) is multiple \((q;p_1,\ldots , p_n)\)-summing if where is a constant \(C\) such that \[ \left(\sum_{i_1=1}^{m_1} \cdots \sum_{i_n=1}^{m_n} \| T(x_{i_1},\ldots,x_{i_n})\| ^q\right)^{1/q} \leq C\cdot w_{p_1}(x_{i_1})\cdot \cdots \cdot w_{p_n}(x_{i_n}) \] for all finite families \((x_{i_1})_{i_1=1}^{m_1} \subseteq X_1,\ldots,(x_{i_n})_{i_n=1}^{m_n} \subseteq X_n\). The associated norm is defined by \(\pi_{(q;p_1,\ldots , p_n)}(T) = \inf\{C:C\) as above\(\}\). Write \((q;p)\) instead of \((q;p_1,\ldots , p_n)\) if \(p_1 = \cdots= p_n =p\).
The operator \(T\) is integral if there is a regular \(Y''\)-valued Borel measure \(G\) of bounded variation on the product \(B=B_{X_1'} \times \cdots \times B_{X_n'}\) such that \[ T(x_1,\ldots, x_n) = \int_B x_1'(x_1)\cdots x_n'(x_n) dG(x_1',\ldots, x_n') \] for all \((x_1,\ldots, x_n) \in X_1 \times \ldots \times X_n\).
A Banach space \(Y\) is a GT space if every bounded linear operator from \(Y\) into \(\ell_2\) is \((1;1)\)-summing.
The main results are the following, inter alia: In [H. P. Rosenthal and S. J. Szarek, Lect. Notes Math. 1470, 108–132 (1991; Zbl 0758.47022)] it was shown that \(u_1\otimes u_2 \in L(X_1 \widehat{\otimes }_\varepsilon X_2;Y_1 \widehat{\otimes }_\pi Y_2)\) if \(u_j \in L(X_j;Y_j)\) for \({\mathcal L}_\infty \) spaces \(X_j\) and \({\mathcal L}_1 \) spaces \(Y_j\), \( j=1,2\). In the present paper, it is shown that this is also true if \(u_j \in L(X_j;Y_j)\) for \({\mathcal L}_\infty \) spaces \(X_j\) and GT spaces with cotype 2 \(Y_j\), \( 1\leq j\leq n\). Next, it is proved that given Banach spaces \(X_1,\ldots,X_n\) are \({\mathcal L}_\infty \) spaces iff for every Banach space \(Y\) all multiple (1,1)-summing operators \(T:X_1 \times \ldots \times X_n \rightarrow Y\) are integral.
In Theorem 3.9., the authors show: Let \(K_j\) be compact Hausdorff spaces, \(Y\) a Banach space, \(T: C(K_1)\times \cdots \times C(K_n) \rightarrow Y\) with representing polymeasure \(\gamma \). Then \(T\) is multiple \((p;1)\)-summing iff the variation \(p\)-norm of \(\gamma \), \(v_p(\gamma )\), is finite. Moreover, in this case, \(v_p(\gamma ) \leq \pi_{(p;1)}(T) \leq 2^{n(1-1/p)}v_p(\gamma )\) in the real case (and \(2^{n(2-1/p)}v_p(\gamma )\) in the complex case).
A question stated in [M. S. Ramanujan and E. Schock, Linear Multilinear Algebra 18, 307–318 (1985; Zbl 0607.47042)] is solved in the present paper by showing the existence of a multiple (2;2) summing operator \(T:X\times Y \rightarrow Z\) such that the linearization \(T_1\) is not in \(\Pi_2(X;\Pi_2(Y;Z))\).

46G25 (Spaces of) multilinear mappings, polynomials
46B20 Geometry and structure of normed linear spaces
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
Full Text: DOI
[1] Alaminos, J., Choi, Y. S., Kim, S. G. andPayá, R., Norm attaining bilinear forms on spaces of continuous functions,Glasgow Math. J. 40 (1998), 359–365. · Zbl 0926.46019 · doi:10.1017/S0017089500032717
[2] Alencar, R., Multilinear mappings of nuclear and integral type,Proc. Amer. Math. Soc. 94 (1985), 33–38. · Zbl 0537.47011 · doi:10.1090/S0002-9939-1985-0781051-6
[3] Aron, R. andBerner, P. D., A Hahn-Banach extension theorem for analytic mappings,Bull. Soc. Math. France 106 (1978), 3–24. · Zbl 0378.46043
[4] Bohnenblust, H. F. andHille, E., On the absolute convergence of Dirichlet series,Ann. of Math. 32 (1931), 600–622. · Zbl 0001.26901 · doi:10.2307/1968255
[5] Bombal, F., Pérez-García, D. andVillanueva, I., Multilinear extensions of Grothendieck’s theorem, to appear inQ. J. Math. · Zbl 1078.46030
[6] Bombal, F. andVillanueva, I., Multilinear operators on spaces of continuous functions,Funct. Approx. Comment. Math. 26 (1998), 117–126. · Zbl 0919.46020
[7] Bombal, F. andVillanueva, I., Integral operators on the product ofC(K) spaces,J. Math. Anal. Appl. 264 (2001), 107–121. · Zbl 1037.46046 · doi:10.1006/jmaa.2001.7648
[8] Cabello Sánchez, F., García, R. andVillanueva, I., Extension of multilinear operators on Banach spaces, inIII Congress on Banach Spaces (Jarandilla de la Vera, 1998), Extracta Math.15, pp. 291–334, Universidad de Extremadura, Badajoz, 2000.
[9] Cilia, R., D’Anna, M. andGutiérrez, J., Polynomial characterization ofLspaces,J. Math. Anal. Appl. 275 (2002), 900–912. · Zbl 1031.46051 · doi:10.1016/S0022-247X(02)00461-4
[10] Davie, A. M., Quotient algebras of uniform algebras,J. London Math. Soc. 7 (1973), 31–40. · Zbl 0264.46055 · doi:10.1112/jlms/s2-7.1.31
[11] Defant, A. andFloret, K.,Tensor Norms and Operator Ideals, North-Holland Math. Studies,176, North-Holland, Amsterdam, 1993.
[12] Diestel, J., Jarchow, H. andTonge, A.,Absolutely Summing Operators, Cambridge Univ. Press, Cambridge, 1995. · Zbl 0855.47016
[13] Diestel, J. andUhl, J. J.,Vector measures, Math. Surveys15, Amer. Math. Soc., Providence, RI, 1977. · Zbl 0369.46039
[14] Dimant, V., Stronglyp-summing multilinear operators,J. Math. Anal. Appl. 278 (2003), 182–193. · Zbl 1043.47018 · doi:10.1016/S0022-247X(02)00710-2
[15] González, M. andGutiérrez, J., The Dunford-Pettis property on tensor products,Math. Proc. Cambridge Philos. Soc. 131 (2001), 185–192. · Zbl 0988.46007 · doi:10.1017/S0305004101005175
[16] John, K., Tensor powers of operators and nuclearity,Math. Nachr. 129 (1986), 115–121. · Zbl 0609.46041 · doi:10.1002/mana.19861290111
[17] Kaijser, S., Some results in the metric theory of tensor products,Studia Math. 63 (1978), 157–170. · Zbl 0392.46047
[18] Littlewood, J., On bounded bilinear forms in an infinite number of variables,Q. J. Math. 2 (1930), 167–171. · JFM 56.0335.01
[19] Matos, M. C., On multilinear mappings of nuclear type,Rev. Mat. Univ. Complut. Madrid 6 (1993), 61–81. · Zbl 0807.46022
[20] Matos, M. C., Fully absolutely summing and Hilbert-Schmidt multilinear mappings,Collect. Math 54 (2003), 111–1. · Zbl 1078.46031
[21] Maurey, B.,Type et cotype dans les espaces munis de structures locales inconditionelles, Séminaire Maurey-Schwartz 1973/74. Exp. Nos. 24 and 25, École Polytech., Paris, 1973.
[22] Meléndez, Y. andTonge, A., Polynomials and the Pietsch domination theorem,Math. Proc. Roy. Irish Acad. 99A (1999), 195–212. · Zbl 0973.46037
[23] Pérez-García, D., The inclusion theorem for multiple summing operators,Preprint. · Zbl 1064.47057
[24] Pérez-García, D. andVillanueva, I., Multiple summing operators on Banach spaces,J. Math. Anal. Appl. 285 (2003), 86–96. · Zbl 1044.46037 · doi:10.1016/S0022-247X(03)00352-4
[25] Pérez-García, D. andVillanueva, I., A composition theorem for multiple summing operators,Preprint. · Zbl 1105.46030
[26] Pisier, G.,Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math.60, Amer. Math. Soc., Providence, RI, 1986.
[27] Ramanujan, M. S. andSchock, E., Operator ideals and spaces of bilinear operators,Linear and Multilinear Algebra 18 (1985), 307–318. · Zbl 0607.47042 · doi:10.1080/03081088508817695
[28] Retherford, J. R. andStegall, C. P., Fully nuclear and completely nuclear operators with applications toL 1- andL spaces,Trans. Amer. Math. Soc. 163 (1972), 457–492. · Zbl 0205.43003
[29] Rosenthal, H. P. andSzarek, S. J., On tensor products of operators fromL p toL q , inFunctional Analysis (Austin, TX, 1987/1989) (Odell, E. and Rosenthal, H., eds.), Lecture Notes in Math.1470, pp. 108–132, Springer-Verlag, Berlin-Heidelberg, 1991.
[30] Villanueva, I., Integral mappings between Banach spaces,J. Math. Anal. Appl. 279 (2003), 56–70. · Zbl 1030.47503 · doi:10.1016/S0022-247X(02)00362-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.