Supersymmetric Noether currents and Seiberg-Witten theory. (English) Zbl 1063.81088

Summary: The purpose of this paper is twofold. The first purpose is to review a systematic construction of Noether currents for supersymmetric theories, especially effective supersymmetric theories. The second purpose is to use these currents to derive the mass-formula for the quantized Seiberg-Witten model from the supersymmetric algebra. We check that the mass-formula of the low-energy theory agrees with that of the full theory (in the broken phase).
{Sadly, while this paper was under the process of publication, Lochlainn O’Raifeartaigh passed away}.


81T60 Supersymmetric field theories in quantum mechanics
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences
Full Text: DOI arXiv


[1] Seiberg, N.; Witten, E., Nucl. phys. B, 426, 19, (1994)
[2] Seiberg, N.; Witten, E., Nucl. phys. B, 431, 484, (1994)
[3] Seiberg, N.; Witten, E., Nucl. phys. B, 430, 485, (1994)
[4] A. Bilal, hep-th/9601007;, C. Gomez, hep-th/9510023;, S. Ketov, hep-th/9611209;, L. O’Raifeartaigh, lectures given at the Strong Interaction Study days on Recent Developments in Strong Interaction Physics in Kloster Banz, September 29-October 1, 1997, Notes by, O. Jahn, and, A. Oppelt;, W. Lerche, hep-th/9611190.
[5] Iorio, A., Phys. lett. B, 487, 171, (2000)
[6] Iorio, A., Phys. lett. B, (1999)
[7] Wolf, S., Mod. phys. lett. A, 14, 2789, (1999)
[8] Witten, E.; Olive, D., Phys. lett. B, 78, 97, (1978)
[9] G. Chalmers, M. Roc̆ek, and, R. von Unge, hep-th/9612195.
[10] de Wit, B.; De Jaegher, J.; de Wit, B.; Kleijn, B.; Vandoren, S., Nucl. phys. B, 514, 553, (1998)
[11] Prasad, M.K.; Sommerfield, C.M., Phys. rev. lett., 35, 760, (1975)
[12] Bogomonlyi, E.B., Sov. J. nucl. phys., 24, 449, (1976)
[13] Seiberg, N.; Ketov, S., Phys. rev. D, 57, 127, (1998)
[14] Clark, T.E.; Love, S.T.; Seiberg, N., Phys. lett. B, 409, 239, (1997)
[15] W. A. Weir, Ph.D. Thesis, University of Durham, 1999.
[16] Noether, E., Nachr. König. gesellsch. wiss. Göttingen math.-phys. klasse, 37, (1918)
[17] Weinberg, S., The quantum theory of fields, (1995), Cambridge Univ. Press Cambridge
[18] Lopuszanski, J., An introduction to symmetry and supersymmetry in quantum field theory, (1991), World Scientific Singapore
[19] T. Hurth, and, K. Skenderis, hep-th/9803030.
[20] Dirac, P.A.M., Lectures on quantum mechanics, (1957), Academic Press San Diego · Zbl 0114.44601
[21] Gitman, D.M.; Tyutin, I.V., Quantization of fields with constraints, (1990), Springer-Verlag New York/Berlin · Zbl 1028.83011
[22] Wess, J.; Bagger, J., Supersymmetry and supergravity, (1992), Princeton Univ. Press Princeton
[23] West, P., Introduction to supersymmetry and supergravity, (1990), World Scientific Singapore · Zbl 0727.53077
[24] Gates, S.J.; Grisaru, M.T.; Roc̆ek, M.; Siegel, W., Superspace, or one thousand and one lessons in supersymmetry, (1983), Benjamin-Cummings Redwood City · Zbl 0986.58001
[25] Dorey, N.; Khoze, V.V.; Mattis, M.P., Phys. rev. D, 54, 2921, (1996)
[26] M. Chaichian, W. F. Chen, and, C. Montonen, hep-th/9803154.
[27] T. Garavaglia, and, S. K. Kauffmann, hep-th/9907059.
[28] Itzykson, C.; Zuber, J.-B., Quantum field theory, (1980), McGraw-Hill New York · Zbl 0453.05035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.