×

zbMATH — the first resource for mathematics

The onset of superconductivity in a domain with a corner. (English) Zbl 1063.82041
Summary: We study the variational problem related to the onset of superconductivity that identifies the transition from the normal state to the superconducting state of a sample in the presence of an applied magnetic field. Our concern is a thin sample whose 2-D cross-section has a corner. In particular, we focus on the quarter-plane. We show a first eigenfunction minimizing the associated Rayleigh quotient exists and decays away from the corner. We also give a rigorous upper bound for the eigenvalue which is related to the critical temperature at which superconductivity emerges.
Reviewer: Reviewer (Berlin)

MSC:
82D55 Statistical mechanical studies of superconductors
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Du Q., SIAM Rev. 34 pp 45– (1992)
[2] Berger J., Philos. Trans. R. Soc. London, Ser. A 355 pp 1969– (1997) · Zbl 0893.35122 · doi:10.1098/rsta.1997.0099
[3] Giorgi T., SIAM (Soc. Ind. Appl. Math.) J. Math. Anal. 30 pp 341– (1999) · Zbl 0920.35058 · doi:10.1137/S0036141097323163
[4] DOI: 10.1016/0031-9163(63)90047-7 · doi:10.1016/0031-9163(63)90047-7
[5] Millman M. H., J. Math. Phys. 10 pp 342– (1969) · Zbl 0169.12702 · doi:10.1063/1.1664849
[6] Chapman S. J., Eur. J. Appl. Math. 5 pp 449– (1994)
[7] DOI: 10.1007/s002050050082 · Zbl 0922.35157 · doi:10.1007/s002050050082
[8] DOI: 10.1063/1.532379 · Zbl 1056.82523 · doi:10.1063/1.532379
[9] Lu K., J. Math. Phys. 40 pp 2647– (1999) · Zbl 0943.35058 · doi:10.1063/1.532721
[10] Del Pino M., Commun. Math. Phys. 210 pp 413– (2000) · Zbl 0982.35077 · doi:10.1007/s002200050786
[11] Lu K., Trans. Am. Math. Soc. 352 pp 1247– (2000) · Zbl 1053.35124 · doi:10.1090/S0002-9947-99-02516-7
[12] Buisson O., Phys. Lett. A 150 pp 36– (1990) · doi:10.1016/0375-9601(90)90056-T
[13] Bruyndoncx V., Phys. Rev. B 60 (6) pp 4285– (1999) · doi:10.1103/PhysRevB.60.4285
[14] Moschchalkov V. V., Nature (London) 373 pp 319– (1995) · doi:10.1038/373319a0
[15] Jadallah H. T., Phys. Rev. Lett. 82 pp 2935– (1999) · doi:10.1103/PhysRevLett.82.2935
[16] Schwiegert V. A., Phys. Rev. B 60 pp 3084– (1999) · doi:10.1103/PhysRevB.60.3084
[17] Brosens F., Solid State Commun. 111 pp 565– (1999) · doi:10.1016/S0038-1098(99)00227-6
[18] Almog Y., J. Math. Phys. 41 pp 7889– (2001) · Zbl 1062.82521 · doi:10.1063/1.1319857
[19] Bolley C., Ann. I.H.P. Phys. Theor. 58 pp 189– (1993)
[20] DOI: 10.1006/jdeq.1993.1071 · Zbl 0784.34021 · doi:10.1006/jdeq.1993.1071
[21] Fomin V. M., Europhys. Lett. 42 pp 553– (1998) · doi:10.1209/epl/i1998-00566-9
[22] Agmon S., Commun. Pure Appl. Math. 17 pp 35– (1964) · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.