×

Extension of Onsager’s reciprocity to large fields and the chaotic hypothesis. (English) Zbl 1063.82533

Summary: We show that the “fluctuation theorem,” a consequence of the chaotic hypothesis of G. Gallavotti and E. G. D. Cohen [Phys. Rev. Lett. 74, 2694–2697 (1995); J. Stat. Phys. 80, 931–970 (1995)] can be interpreted as extendin to arbitrary forcing fields Green-Kubo’s formulas, hence Onsager’s reciprocity, in a class of reversible nonequilibrium statistical mechanical systems.

MSC:

82C03 Foundations of time-dependent statistical mechanics

Citations:

Zbl 1081.82580
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] B. D. Hoolian, Phys. Rev. Lett. 59 pp 10– (1987)
[2] W. G. Hoover, Phys. Rev. E 49 pp 1913– (1994)
[3] Ch. Dellago, Phys. Rev. E 53 pp 1485– (1985)
[4] D. J. Evans, Phys. Rev. 142A pp 5990– (1990)
[5] D. Ruelle, in: Chaotic Motions and Strange Attractors, (1993)
[6] D. J. Evans, Phys. Rev. Lett. 71 pp 2401– (1993)
[7] G. Gallavotti, Phys. Rev. Lett. 74 pp 2694– (1995)
[8] , J. Stat. Phys. 80 pp 931– (1995) · Zbl 1081.82580
[9] G. Gallavotti, J. Stat. Phys. 84 pp 899– (1996) · Zbl 1081.82581
[10] Y. G. Sinai, in: Lectures in Ergodic Theory, (1977)
[11] G. Gallavotti, Math. Phys. Electronic J. 1 pp 1– (1995)
[12] R. Dorfman, in: Transport Coefficients (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.