Zuo, Zhiqiang; Wang, Jinzhi; Huang, Lin Robust stabilization for nonlinear discrete-time systems. (English) Zbl 1063.93044 Int. J. Control 77, No. 4, 384-388 (2004). Robust state feedback stabilization of nonlinear discrete-time systems with sector-bound nonlinearities is considered. Sufficient conditions in terms of linear matrix inequalities are presented for stabilizability. Then, the results are extended to the case where there is a delayed state component in the system dynamics. Three simple examples are given for illustration. Reviewer: Edwin Engin Yaz (Milwaukee) Cited in 7 Documents MSC: 93D21 Adaptive or robust stabilization 93B51 Design techniques (robust design, computer-aided design, etc.) 93C55 Discrete-time control/observation systems 93C10 Nonlinear systems in control theory 15A39 Linear inequalities of matrices Keywords:stabilization of systems by feedback; robust design; discrete-time systems; nonlinear systems; sector-bound nonlinearities; linear matrix inequalities; delay PDF BibTeX XML Cite \textit{Z. Zuo} et al., Int. J. Control 77, No. 4, 384--388 (2004; Zbl 1063.93044) Full Text: DOI References: [1] Boyd S, SIAM (1994) [2] Green M, Prentice Hall (1995) [3] DOI: 10.1016/0016-0032(95)00087-9 · Zbl 0849.93053 · doi:10.1016/0016-0032(95)00087-9 [4] DOI: 10.1080/00207179408921466 · Zbl 0800.93989 · doi:10.1080/00207179408921466 [5] DOI: 10.1080/00207178908953354 · Zbl 0684.93021 · doi:10.1080/00207178908953354 [6] DOI: 10.1080/002071700219812 · Zbl 1006.93028 · doi:10.1080/002071700219812 [7] DOI: 10.1109/9.45179 · Zbl 0705.93060 · doi:10.1109/9.45179 [8] DOI: 10.1080/00207178808906305 · Zbl 0662.93052 · doi:10.1080/00207178808906305 [9] DOI: 10.1155/S1024123X00001435 · Zbl 0968.93075 · doi:10.1155/S1024123X00001435 [10] DOI: 10.1080/00207170010038712 · Zbl 1022.93034 · doi:10.1080/00207170010038712 [11] DOI: 10.1109/72.925561 · doi:10.1109/72.925561 [12] DOI: 10.1080/00207178908953356 · Zbl 0684.93022 · doi:10.1080/00207178908953356 [13] Yakubovich VA, Vestnik Leningrad University Math. 4 pp 73– (1977) [14] Zhou K, Prentice Hall (1996) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.