×

zbMATH — the first resource for mathematics

Production matrices. (English) Zbl 1064.05012
Succession rules have been suggested as a way to generate combinatorial objects of a certain description. This paper studies two types of matrices that can be associated with a succession rule, the production matrix and the ECO (= Enumeration of Combinatorial Objects) matrix. These matrices are intimately connected to the generating functions of the sequences enumerating the combinatorial objects.

MSC:
05A15 Exact enumeration problems, generating functions
05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)
11B83 Special sequences and polynomials
68Q42 Grammars and rewriting systems
Software:
OEIS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aigner, M., Catalan-like numbers and determinants, J. combin. theory ser. A, 87, 33-51, (1999) · Zbl 0929.05004
[2] Aigner, M., Catalan and other numbers: a recurrent theme, (), 347-390 · Zbl 0971.05002
[3] S. Bacchelli, E. Barcucci, E. Grazzini, E. Pergola, Exhaustive generation of combinatorial objects by ECO, Acta Inform., in press · Zbl 1090.68555
[4] Banderier, C.; Bousquet-Mélou, M.; Denise, A.; Flajolet, P.; Gardy, D.; Gouyou-Beauchamps, D., Generating functions for generating trees, Discrete math., 246, 29-55, (2002) · Zbl 0997.05007
[5] Barcucci, E.; Del Lungo, A.; Pergola, E.; Pinzani, R., ECO: a methodology for the enumeration of combinatorial objects, J. differential equations appl., 5, 435-490, (1999) · Zbl 0944.05005
[6] Barcucci, E.; Del Lungo, A.; Pergola, E.; Pinzani, R., A methodology for plane trees enumeration, Discrete math., 180, 45-64, (1998) · Zbl 0904.05004
[7] Barcucci, E.; Del Lungo, A.; Pergola, E.; Pinzani, R., Random generation of trees and other combinatorial objects, Theoret. comput. sci., 218, 219-232, (1999) · Zbl 0916.68124
[8] Barnabei, M.; Brini, A.; Nicoletti, G., Recursive matrices and umbral calculus, J. algebra, 75, 546-573, (1982) · Zbl 0509.05005
[9] Berstein, M.; Sloane, N.J.A., Some canonical sequences of integers, Linear algebra appl., 226-228, 57-72, (1995) · Zbl 0832.05002
[10] de Brujin, N.G.; Knuth, D.E.; Rice, S.O., The average height of planted plane trees, () · Zbl 0247.05106
[11] Chung, F.R.K.; Graham, R.L.; Hoggatt, V.E.; Kleiman, M., The number of Baxter permutations, J. combin. theory ser. A, 24, 382-394, (1978) · Zbl 0398.05003
[12] A. Del Lungo, A. Frosini, S. Rinaldi, ECO method and the exhaustive generation of convex polyominoes, Discrete Math. Theoret. Comput. Sci., in press · Zbl 1038.68084
[13] E. Deutsch, L.W. Shapiro, Exponential Riordan matrices, in preparation
[14] Ferrari, L.; Pergola, E.; Pinzani, R.; Rinaldi, S., An algebraic characterization of the set of succession rules, Theoret. comput. sci., 281, 351-367, (2002) · Zbl 1021.68068
[15] Ferrari, L.; Pinzani, R., A linear operator approach to succession rules, Linear algebra appl., 348, 231-246, (2002) · Zbl 1003.05007
[16] Flajolet, P., Combinatorial aspects of continued fractions, Discrete math., 32, 125-161, (1980) · Zbl 0445.05014
[17] Harary, F.; Read, R.C., The enumeration of tree-like polyhexes, Proc. Edinburgh math. soc., 17, 1-13, (1970) · Zbl 0201.26104
[18] Merlini, D.; Verri, M.C., Generating trees and proper Riordan arrays, Discrete math., 218, 167-183, (2000) · Zbl 0949.05004
[19] Peart, P.; Woan, W.-J., Generating functions via Hankel and Stieltjes matrices, J. integer seq., 3, (2000), 00.2.1
[20] Pergola, E.; Pinzani, R.; Rinaldi, S., A set of well-defined operations on succession rules, (), 141-152 · Zbl 0967.68116
[21] Pergola, E.; Pinzani, R.; Rinaldi, S., Approximating algebraic functions by means of rational ones, Theoret. comput. sci., 270, 1-2, 643-657, (2002) · Zbl 0988.68122
[22] Rogers, D.G., Pascal triangles, Catalan numbers and renewal arrays, Discrete math., 22, 301-310, (1978) · Zbl 0398.05007
[23] Sedgewick, R.; Flajolet, P., Analysis of algorithms, (1996), Addison-Wesley Reading, MA
[24] Shapiro, L.W., Bijections and the Riordan group, (), 81-95
[25] Shapiro, L.W.; Getu, S.; Woan, W.-J.; Woodson, L.C., The Riordan group, Discrete appl. math., 34, 229-239, (1991) · Zbl 0754.05010
[26] Sloane, N.J.A., The on-line encyclopedia of integer sequences · Zbl 1274.11001
[27] Sprugnoli, R., Riordan arrays and combinatorial sums, Discrete math., 132, 267-290, (1994) · Zbl 0814.05003
[28] Stein, P.R.; Waterman, M.S., On some new sequences generalizing the Catalan and Motzkin numbers, Discrete math., 26, 261-272, (1979) · Zbl 0405.10009
[29] West, J., Generating trees and the Catalan and Schröder numbers, Discrete math., 146, 247-262, (1996) · Zbl 0841.05002
[30] West, J., Generating trees and forbidden subsequences, Discrete math., 157, 363-374, (1996) · Zbl 0877.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.