×

zbMATH — the first resource for mathematics

Coincidence and fixed points for hybrid strict contractions. (English) Zbl 1064.54055
The author slightly generalizes a condition introduced by M. Aamri and D. El Moutawaki [ibid. 270, 181–188 (2002; Zbl 1008.54030)] relaxing the commutativity of two mappings to obtain a coincidence theorem for set-valued mappings.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aamri, M.; El Moutawakil, D., Some new common fixed point theorems under strict contractive conditions, J. math. anal. appl., 270, 181-188, (2002) · Zbl 1008.54030
[2] Itoh, S.; Takahashi, W., Single-valued mappings, multivalued mappings and fixed point theorems, J. math. anal. appl., 59, 514-521, (1977) · Zbl 0351.47040
[3] Jungck, G., Compatible mappings and common fixed points, Internat. J. math. math. sci., 9, 771-779, (1986) · Zbl 0613.54029
[4] Jungck, G.; Rhoades, B.E., Fixed points for set-valued functions without continuity, Indian J. pure appl. math., 29, 227-238, (1998) · Zbl 0904.54034
[5] Kaneko, H.; Sessa, S., Fixed point theorems for compatible multivalued and single valued mappings, Internat. J. math. math. sci., 12, 257-262, (1989) · Zbl 0671.54023
[6] Pant, R.P., Common fixed points of non-commuting mappings, J. math. anal. appl., 188, 436-440, (1994) · Zbl 0830.54031
[7] Pant, R.P., Common fixed point theorems for contractive maps, J. math. anal. appl., 226, 251-258, (1998) · Zbl 0916.54027
[8] Pant, R.P., Common fixed points of Lipschitz type mapping pairs, J. math. anal. appl., 240, 280-283, (1999) · Zbl 0933.54031
[9] Pant, R.P., Discontinuity and fixed points, J. math. anal. appl., 240, 284-289, (1999) · Zbl 0938.54040
[10] Rhoades, B.E., A comparison of various definitions of contractive mappings, Trans. amer. math. soc., 226, 257-290, (1977) · Zbl 0365.54023
[11] Sessa, S., On a weak commutativity condition of mappings in fixed point consideration, Publ. inst. math., 32, 149-153, (1982) · Zbl 0523.54030
[12] Shahzad, N., A result on best approximation, Tamkang J. math., Tamkang J. math., 30, 165-226, (1999), corrections
[13] Shahzad, N., Invariant approximation and R-subweakly commuting maps, J. math. anal. appl., 257, 39-45, (2001) · Zbl 0989.47047
[14] Shahzad, N., Coincidence points and R-subweakly commuting multivalued maps, Demonstratio math., 36, 427-431, (2003) · Zbl 1039.54023
[15] Shahzad, N.; Kamran, T., Coincidence points and R-weakly commuting maps, Arch. math. (Brno), 37, 179-183, (2001) · Zbl 1090.54040
[16] Singh, S.L.; Mishra, S.N., Coincidence and fixed points of non-self hybrid contractions, J. math. anal. appl., 256, 486-497, (2001) · Zbl 0985.47046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.