Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. (English) Zbl 1064.65037

Two Levenberg-Marquardt algorithms are considered for the solution of a, not necessarily square, system of nonlinear equations with convex constraints. Motivated by an earlier paper of N. Yamashita and M. Fukushima [Comput. Suppl. 15, 239–249 (2001; Zbl 1001.65047)] the usual nonsingularity assumption is replaced by an error bound condition that allows the solution set to be (locally) nonunique. At each step, one of the algorithms solves a strictly convex minimization problem, while the other requires only the solution of one system of linear equations. Both methods are shown to converge locally quadratically. Some numerical examples for the second method are given.


65H10 Numerical computation of solutions to systems of equations
90C25 Convex programming


Zbl 1001.65047


STRSCNE; levmar
Full Text: DOI


[1] Bellavia, S.; Macconi, M.; Morini, B., An affine scaling trust-region approach to bound-constrained nonlinear systems, Appl. numer. math, 44, 257-280, (2003) · Zbl 1018.65067
[2] S. Bellavia, M. Macconi, B. Morini, STRSCNE: a scaled trust-region solver for constrained nonlinear systems, Comput. Optim. Appl., to appear. · Zbl 1056.90128
[3] Bertsekas, D.P., Nonlinear programming, (1995), Athena Scientific Massachusetts · Zbl 0935.90037
[4] Dan, H.; Yamashita, N.; Fukushima, M., Convergence properties of the inexact levenberg – marquardt method under local error bound conditions, Optim. methods software, 17, 605-626, (2002) · Zbl 1030.65049
[5] Dennis, J.E.; Schnabel, R.B., Numerical methods for unconstrained optimization and nonlinear equations, (1983), Prentice-Hall Englewood Cliffs, NJ · Zbl 0579.65058
[6] Deuflhard, P.; Hohmann, A., Numerische Mathematik, (1991), Walter de Gruyter Germany
[7] Dirkse, S.P.; Ferris, M.C., Mcpliba collection of nonlinear mixed complementarity problems, Optim. methods software, 5, 319-345, (1995)
[8] J.Y. Fan, Y.X. Yuan, On the convergence of a new Levenberg-Marquardt method, Technical Report, AMSS, Chinese Academy of Sciences, Beijing, China, 2001.
[9] C.A. Floudas, P.M. Pardalos, C.S. Adjiman, W.R. Esposito, Z.H. Gumus, S.T. Harding, J.L. Klepeis, C.A. Meyer, C.A. Schweiger, Handbook of Test Problems in Local and Global Optimization, Nonconvex Optimization and Its Applications, Vol. 33, Kluwer Academic Publishers, The Netherlands, 1999. · Zbl 0943.90001
[10] Gabriel, S.A.; Pang, J.-S., A trust region method for constrained nonsmooth equations, (), 155-181 · Zbl 0813.65091
[11] Hock, W.; Schittkowski, K., Test examples for nonlinear programming codes, Lecture notes in economics and mathematical systems, Vol. 187, (1981), Springer New York · Zbl 0452.90038
[12] Hoffman, A.J., On approximate solutions of systems of linear inequalities, J. nat. bur. stand, 49, 263-265, (1952)
[13] Kanzow, C., An active set-type Newton method for constrained nonlinear systems, (), 179-200 · Zbl 0983.90060
[14] Kanzow, C., Strictly feasible equation-based methods for mixed complementarity problems, Numer. math, 89, 135-160, (2001) · Zbl 0992.65070
[15] Kelley, C.T., Iterative methods for linear and nonlinear equations, (1995), SIAM Philadelphia · Zbl 0832.65046
[16] Kozakevich, D.N.; Martinez, J.M.; Santos, S.A., Solving nonlinear systems of equations with simple bounds, Comput. appl. math, 16, 215-235, (1997) · Zbl 0896.65041
[17] Meintjes, K.; Morgan, A.P., A methodology for solving chemical equilibrium systems, Appl. math. comput, 22, 333-361, (1987) · Zbl 0616.65057
[18] Meintjes, K.; Morgan, A.P., Chemical equilibrium systems as numerical test problems, ACM trans. math. software, 16, 143-151, (1990) · Zbl 0900.65153
[19] Monteiro, R.D.C.; Pang, J.-S., A potential reduction Newton method for constrained equations, SIAM J. optim, 9, 729-754, (1999) · Zbl 0958.65069
[20] Ortega, J.M.; Rheinboldt, W.C., Iterative solution of nonlinear equations in several variables, (1970), Academic Press New York · Zbl 0241.65046
[21] L. Qi, X.-J. Tong, D.-H. Li, An active-set projected trust region algorithm for box constrained nonsmooth equations, J. Optim. Theory Appl., to appear. · Zbl 1140.65331
[22] Robinson, S.M., Some continuity properties of polyhedral multifunctions, Math. programming stud, 14, 206-214, (1981) · Zbl 0449.90090
[23] Ulbrich, M., Nonmonotone trust-region method for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems, SIAM J. optim, 11, 889-917, (2001) · Zbl 1010.90085
[24] Wang, T.; Monteiro, R.D.C.; Pang, J.-S., An interior point potential reduction method for constrained equations, Math. programming, 74, 159-195, (1996) · Zbl 0855.90128
[25] Yamashita, N.; Fukushima, M., On the rate of convergence of the levenberg – marquardt method, Comput, 15, Suppl., 239-249, (2001) · Zbl 1001.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.