zbMATH — the first resource for mathematics

Comparison of different estimators of \(P[Y<X]\) for a scaled Burr type \(X\) distribution. (English) Zbl 1065.62172
Summary: We consider the estimation of \(P[Y < X]\) when \(Y\) and \(X\) are two independent scaled Burr Type \(X\) distributions having the same scale parameter. The maximum likelihood estimator and its asymptotic distribution are used to construct an asymptotic confidence interval of \(P[Y < X]\). Assuming that the common scale parameter is known, the maximum likelihood estimator, uniformly minimum variance unbiased estimator, and approximate Bayes estimators of \(P[Y < X]\) are discussed. Different methods and the corresponding confidence intervals are compared using Monte Carlo simulations. One data set has been analyzed for illustrative purposes.

62N02 Estimation in survival analysis and censored data
65C05 Monte Carlo methods
62F25 Parametric tolerance and confidence regions
62F10 Point estimation
62E20 Asymptotic distribution theory in statistics
62F15 Bayesian inference
65C60 Computational problems in statistics (MSC2010)
Full Text: DOI
[1] DOI: 10.1016/S0378-3758(97)00038-4 · Zbl 0915.62001
[2] DOI: 10.2307/2291285 · Zbl 0792.62020
[3] Badar M. G., ICCM-IV, in: Progress in Science and Engineering Composites pp 1129– (1982)
[4] DOI: 10.1214/aoms/1177731607 · Zbl 0060.29602
[5] DOI: 10.2307/1390921
[6] DOI: 10.2307/1270770 · Zbl 0869.62067
[7] Efron B., The Jackknife, the Bootstrap and Other Resampling Plans (1982) · Zbl 0496.62036
[8] Ferguson T. S., Mathematical Statistics; A Decision Theoretic Approach (1967) · Zbl 0153.47602
[9] DOI: 10.1214/aos/1176350933 · Zbl 0663.62046
[10] DOI: 10.1016/0026-2714(94)00056-T
[11] Jaheen Z. F., J. Appl. Statist. Sci. 3 pp 281– (1996)
[12] Johnson N. L., 2nd ed., in: Continuous Univariate Distribution Vol. 1 (1995)
[13] Lindley D. V., Trabajos de Estadistica 3 pp 281– (1980)
[14] DOI: 10.1109/24.229504 · Zbl 0800.62609
[15] Press W. H., 2nd. ed., in: Numerical Recipes in FORTRAN, The Art of Scientific Computing (1992)
[16] DOI: 10.1016/S0898-1221(98)00143-6 · Zbl 0933.62042
[17] DOI: 10.1093/biomet/64.1.129 · Zbl 0354.62017
[18] DOI: 10.1080/03610929108830633 · Zbl 0850.62288
[19] Surles J. G., J. Appl. Statist. Sci. 5 pp 225– (1998)
[20] DOI: 10.1023/A:1011352923990 · Zbl 0984.62082
[21] Surles J. G., J. Statist. Plan. Infer. (2004)
[22] DOI: 10.2307/1267617 · Zbl 0292.62021
[23] DOI: 10.1109/TR.1977.5215074 · Zbl 0379.62025
[24] DOI: 10.1007/BF02613681 · Zbl 0775.62276
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.