Límaco, J.; Clark, H. R.; Feitosa, A. J. Beam evolution equation with variable coefficients. (English) Zbl 1067.35129 Math. Methods Appl. Sci. 28, No. 4, 457-478 (2005). Summary: We investigate the following initial-boundary value problem for the nonlinear beam equation with variable coefficients on the action of a linear internal damping: \[ (a(x,t)u'(x,t))'+ \Delta(b(x,t) \Delta u(x,t))- M\biggl( x,t, \int_\Omega |\nabla u(x,t)|^2\,dx\biggr) \Delta u(x,t)+ \delta u'(x,t)= 0 \text{ in }Q, \] \[ u(x,t)= \frac {\partial u}{\partial\nu} (x,t)= 0\quad\text{on }\Sigma, \] \[ u(x,0)= u_0(x), \qquad u'(x,0)= u_1(x) \quad\text{in }\Omega, \] where \(\Omega\) is a non-empty bounded open set of \(\mathbb R^n\), for \(n\geq 1\), with \(C^2\) boundary \(\Gamma\), \(Q\) is the cylinder \(\Omega\times ]0,T[\) of \(\mathbb R^{n+1}\), for \(T>0\), \(|\nabla u(x,t)|\) is the norm in \(\mathbb R^n\) of the vector \(\nabla u(x,t)\). We show the existence of a unique global weak solution and that the energy associated with this solution has a decay rate estimate. Besides, we prove the existence and uniqueness of non-local strong solutions. Cited in 2 Documents MSC: 35Q72 Other PDE from mechanics (MSC2000) 74K10 Rods (beams, columns, shafts, arches, rings, etc.) 35K55 Nonlinear parabolic equations 35B40 Asymptotic behavior of solutions to PDEs Keywords:fully clamped boundary; nonlinear beam equation; linear internal damping; existence of a unique global weak solution; decay rate; strong solutions PDF BibTeX XML Cite \textit{J. Límaco} et al., Math. Methods Appl. Sci. 28, No. 4, 457--478 (2005; Zbl 1067.35129) Full Text: DOI References: [1] Ball, Initial boundary value problem for an extensible beam, Journal of Mathematical Analysis and Application 42 pp 61– (1973) · Zbl 0254.73042 · doi:10.1016/0022-247X(73)90121-2 [2] Biler, Remark on the decay for damped string and beam equations, Nonlinear Analysis TMA 10 pp 839– (1986) · Zbl 0611.35057 · doi:10.1016/0362-546X(86)90071-4 [3] Brito, Decay estimates for generalized damped extensible string and beam equations, Nonlinear Analysis TMA 8 pp 1489– (1984) · Zbl 0524.35026 · doi:10.1016/0362-546X(84)90059-2 [4] Dickey, Free vibrations and dynamic buckling of the extensible beam, Journal of Mathematical Analysis and Applications 29 pp 443– (1970) · Zbl 0187.04803 · doi:10.1016/0022-247X(70)90094-6 [5] Eiesley, Nonlinear vibrations of beams and rectangular plates, Zeitschrift fur Angewandle Mathematik und Physik 15 pp 167– (1964) [6] Ladyzhenskaia, Boundary value problems for partial differential equations and certain classes of operator equations, American Mathematical Society Translations Series 2 10 pp 223– (1958) [7] Lions JL Quelques methodes de resolution des problèmes aux limites non lineaires 1969 [8] Ma, Boundary stabilization for a non-linear beam on elastic bearings, Mathematical Methods in the Applied Sciences 4 pp 583– (2001) [9] Medeiros, On a new class of nonlinear wave equations, Journal of Mathematical Analysis and Applications 69 pp 252– (1979) · Zbl 0407.35051 · doi:10.1016/0022-247X(79)90192-6 [10] Pereira, Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam equation, Nonlinear Analysis 8 pp 613– (1990) · Zbl 0704.45013 · doi:10.1016/0362-546X(90)90041-E [11] Patchu, On a global solution and asymptotic behavior for the generalized damped extensible beam equation, Journal of Differential Equation 135 pp 299– (1997) · Zbl 0884.35105 · doi:10.1006/jdeq.1996.3231 [12] Woinwsky-Krieger, The effect of axial force on the vibration of hinged bars, Journal of Applied Mechanics 17 pp 35– (1950) · Zbl 0036.13302 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.