zbMATH — the first resource for mathematics

Inverse variational problem and canonical structure of Burgers equations. (English) Zbl 1067.37084
Summary: It is demonstrated that Burgers equations, which are often believed to describe dissipative systems, are non-Lagrangian. Following Bateman’s analysis of damped harmonic oscillator, an action is defined to look for a Lagrangian representation for equations in the Burgers hierarchy. The associated higher-order Lagrangian densities are found to be degenerate such that the Hamiltonian structure could be studied by a repackaging of Ostrogradski formalism and Dirac’s theory of constraints.

37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
35Q53 KdV equations (Korteweg-de Vries equations)
35R30 Inverse problems for PDEs
Full Text: DOI
[1] DOI: 10.1007/978-1-4612-4350-2
[2] Crighton D. G., (Frontiers in physical acoustics), in: Basic Nonlinear Acoustics (1986)
[3] DOI: 10.1002/cpa.3160270108 · Zbl 0291.35012
[4] DOI: 10.1002/cpa.3160030302 · Zbl 0039.10403
[5] DOI: 10.1002/cpa.3160030302 · Zbl 0039.10403
[6] DOI: 10.1063/1.530615 · Zbl 0811.35130
[7] DOI: 10.1103/PhysRevLett.47.142
[8] DOI: 10.1063/1.1665772 · Zbl 0283.35021
[9] DOI: 10.1063/1.1665772 · Zbl 0283.35021
[10] DOI: 10.1088/0305-4470/29/23/033 · Zbl 0905.35083
[11] Helmholtz H., J. Reine Angew. Math. 100 pp 137– (1887)
[12] Frankel T., The Geometry of Physics (1997) · Zbl 0888.58077
[13] DOI: 10.1103/PhysRev.38.815 · Zbl 0003.01101
[14] Caratheodory C., Calculus of Variations and Partial Differential Equations of the First Order 2 (1967)
[15] Ostrogradski M., Mem. Ac. St. Petersburg 1 pp 385– (1850)
[16] Whitaker E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (1965)
[17] Dirac P. A. M., Belfer Graduate School Monograph Series No. 2, in: Lectures on Quantum Mechanics (1964)
[18] DOI: 10.1063/1.525162 · Zbl 0475.70023
[19] DOI: 10.1007/BF01882730
[20] DOI: 10.1007/BF01882730
[21] DOI: 10.1103/PhysRevLett.60.1692 · Zbl 1129.81328
[22] DOI: 10.1088/0305-4470/16/18/020 · Zbl 0543.76016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.