zbMATH — the first resource for mathematics

Generalized Mukai conjecture for special Fano varieties. (English) Zbl 1068.14049
A Fano variety \(X\) is a projective variety with ample anti-canonical bundle \(-K_X\). For such varieties, the Picard number \(\rho\) is strictly related to the geometry of rational curves on \(X\). Namely, defining the pseudo-index as \(i:=\min\{m: -K_X\cdot C=m\) for some rational curve \(C\subset X\}\), it has been conjectured that \( \rho\leq {\dim X}/(i-1)\) and equality implies that \(X\) is a product of projective spaces. The conjecture has been proved by J. A. Wisniewski [Manuscr. Math. 68, 135-141 (1990; Zbl 0715.14033)], when \(i>(\dim X+2)/2\), and by L. Bonavero, C. Casagrande, O. Debarre and S. Druel [Comment. Math. Helv. 78, No.3, 601–626 (2003; Zbl 1044.14019)], for varieties of dimension \(4\).
In the paper under review, the authors prove that the conjecture holds for \(i\geq (\dim X+3)/3\), provided that \(X\) admits an unsplit covering family of rational curves, i.e. a proper component of the space of rational curves Hom\(^n_{\text{bir}}(\mathbb P^1,X)\) mod Aut(\(\mathbb P^1\)), which dominates \(X\).
Using a careful analysis of split and unsplit families of rational curves on \(X\), the authors are then able to prove the conjecture for Fano varieties of dimension \(5\).

14J45 Fano varieties
14E30 Minimal model program (Mori theory, extremal rays)
Full Text: DOI arXiv
[1] M. Andreatta and J.A. Wiśniewski: “On manifolds whose tangent bundle contains an ample subbundle”, Invent. Math., Vol. 146, (2001), pp. 209-217. http://dx.doi.org/10.1007/PL00005808 · Zbl 1081.14060
[2] L. Bonavero, C. Casagrande, O. Debarre and S. Druel: “Sur une conjecture de Mukai”, Comment. Math. Helv., Vol. 78, (2003), pp. 601-626. http://dx.doi.org/10.1007/s00014-003-0765-x · Zbl 1044.14019
[3] L. Bonavero, F. Campana and J.A. Wiśniewski: “Variétés complexes dont l’éclat’ee en un point est de Fano”, C.R. Math. Acad. Sci. Paris, Vol. 334, (2002), pp. 463-468. · Zbl 1036.14020
[4] F. Campana: “Connexité rationnelle des variétés de Fano”, Ann. Sci. École Norm. Sup., Vol. 25, (1992), pp. 539-545. · Zbl 0783.14022
[5] K. Cho, Y. Miyaoka and N.I. Shepherd-Barron: “Characterizations of projective space and applications to complex symplectic manifolds”, in: Higher dimensional birational geometry (Kyoto, 1997) Adv. Stud. Pure Math., Vol. 35, Math. Soc. Japan, Tokyo, 2002, pp. 1-88. · Zbl 1063.14065
[6] O. Debarre: Higher-Dimensional Algebraic Geometry, Universitext Springer-Verlag, New York, 2001. · Zbl 0978.14001
[7] S. Kebekus: “Characterizing the projective space after Cho, Miyaoka and Shepherd-Barron”, In: Complex geometry (Göttingen, 2000), Springer, Berlin, 2002, pp. 147-155. · Zbl 1046.14028
[8] J. Kollár: Rational Curves on Algebraic Varieties, Ergebnisse der Math. Vol. 32, Springer-Verlag, 1996.
[9] J. Kollár, Y. Miyaoka and S. Mori: “Rational connectedness and boundedness of Fano manifolds”, J. Diff. Geom. Vol. 36, (1992), pp. 765-779. · Zbl 0759.14032
[10] S. Mori: “Projective manifolds with ample tangent bundle”, Ann. Math., Vol. 110, (1979), pp. 595-606. http://dx.doi.org/10.2307/1971241 · Zbl 0423.14006
[11] S. Mukai: “Open problems”, In: Birational geometry of algebraic varieties, Taniguchi Foundation, Katata, 1988.
[12] G. Occhetta: A characterization of products of projective spaces, preprint, February 2003, http://www.science.unitn.it/∼occhetta.
[13] J.A. Wiśniewski: “On a conjecture of Mukai”, Manuscripta Math., Vol. 68, (1990), pp. 135-141.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.