Hassan, M. M. Exact solitary wave solutions for a generalized KdV-Burgers equation. (English) Zbl 1068.35129 Chaos Solitons Fractals 19, No. 5, 1201-1206 (2004). Summary: Using the special truncated expansion method, the solitary wave solutions are constructed for the compound Korteweg-de Vries-Burgers (KdVB) equation. Exact and explicit solitary wave solutions for a generalized KdVB equation are obtained by introducing a suitable ansatz equation. The generalized two-dimensional KdVB equation is discussed. Some particular cases of the generalized KdVB equation are solved by using these methods. Cited in 9 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35Q51 Soliton equations PDF BibTeX XML Cite \textit{M. M. Hassan}, Chaos Solitons Fractals 19, No. 5, 1201--1206 (2004; Zbl 1068.35129) Full Text: DOI OpenURL References: [1] Drazin, P.G.; Johnson, R.S., Solitons: an introduction, (1989), Cambridge University Press Cambridge · Zbl 0661.35001 [2] Lu, B.Q.; Xiu, B.Z.; Pang, Z.I.; Jiang, X.F., Phys. lett. A, 175, 113, (1993) [3] Yang, Z.J.; Dulap, R.A.; Geldart, D.J.W., Int. J. theor. phys., 33, 2057, (1994) [4] Lu, B.Q.; Pan, Z.I.; Qu, B.Z.; Jiang, X.F., Phys. lett. A, 180, 61, (1993) [5] Wang, M.L., Phys. lett. A, 213, 279, (1996) [6] Fan, E., Phys. lett. A, 277, 212, (2000) [7] Zhang, J., Int. J. theor. phys., 38, 1829, (1999) [8] Korteweg, D.J.; de Vries, G.; Scott, A.C.; Chu, F.Y.F.; McLaughlin, D.W., Phil. mag., Proc. IEEE, 61, 1443, (1973) [9] Zhang, J., Int. J. theor. phys., 37, 1541, (1998) [10] Jeffrey, A.; Kakutani, T., SIAM rev., 14, 582, (1972) [11] Wadati, M.; Wadati, M.; Wadati, M.; Wadati, M., J. phys. soc. jpn., J. phys. soc. jpn., J. phys. soc. jpn., J. phys. soc. jpn., 38, 673, (1975) [12] Conte, R.; Musette, M., J. phys. A: math. gen., 25, 5609, (1992) [13] Vlieg-Hulstman, M.; Halford, W.D.; Halford, W.D.; Vlieg-Hulstman, M., Wave motion, J. phys. A: math. gen., 25, 2375, (1992) [14] Johnson, R.S.; Jian-Jun, S., J. fluid mech., J. phys. A: math. gen., 20, 149, (1987) [15] Jeffrey, A., Z. angew. math. mech. (ZAMM), 78, 373, (1998) [16] Zhang, J., Int. J. theor. phys., 35, 1793, (1996) [17] Zhang, W.; Chang, Q., Chaos, solitons & fractals, 13, 311, (2002) [18] Parkes, E.J., J. phys. A, 27, L497, (1994) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.