zbMATH — the first resource for mathematics

New limited memory bundle method for large-scale nonsmooth optimization. (English) Zbl 1068.90101
Summary: Many practical optimization problems involve nonsmooth (that is, not necessarily differentiable) functions of hundreds or thousands of variables. In such problems the direct application of smooth gradient-based methods may lead to a failure due to the nonsmooth nature of the problem. On the other hand, none of the current general nonsmooth optimization methods is efficient in large-scale settings. In this article we describe a new limited memory variable metric based bundle method for nonsmooth large-scale optimization. In addition, we introduce a new set of academic test problems for large-scale nonsmooth minimization. Finally, we give some encouraging results from numerical experiments using both academic and practical test problems.

90C30 Nonlinear programming
90C56 Derivative-free methods and methods using generalized derivatives
ve08; LDGB; L-BFGS
Full Text: DOI
[1] DOI: 10.1088/0266-5611/17/6/326 · Zbl 1016.94004
[2] Mäkelä MM, Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control, World Scientific Publishing Co. (1992) · Zbl 0757.49017
[3] Lemaréchal C, Optimization pp pp. 529–572– (1989)
[4] Fletcher R, Practical Methods of Optimization (1987)
[5] Hiriart-Urruty J-B, Convex Analysis and Minimization Algorithms II, Springer-Verlag (1993)
[6] Kiwiel KC, Methods of Descent for Nondifferentiable Optimization (1985)
[7] DOI: 10.1080/10556780290027828 · Zbl 1050.90027
[8] Clarke FH, Optimization and Nonsmooth Analysis, Wiley-Interscience (1983)
[9] DOI: 10.1023/A:1022650107080 · Zbl 0955.90102
[10] DOI: 10.1023/A:1011990503369 · Zbl 1029.90060
[11] Shor NZ, Minimization Methods for Non-Differentiable Functions, Springer-Verlag (1985)
[12] DOI: 10.1007/BF01582063 · Zbl 0809.90116
[13] DOI: 10.1090/S0025-5718-1980-0572855-7
[14] DOI: 10.1007/BF01399316 · Zbl 0482.65035
[15] DOI: 10.1090/S0025-5718-1977-0455338-4
[16] DOI: 10.1137/S1052623496306450 · Zbl 0918.65044
[17] Haarala M, University of Jyväskylä (2003)
[18] Schramm H, Eine Kombination von Bundle- und Trust-Region-Verfahren zur Lösung nichtdifferenzierbarer Optimierungsprobleme 30 (1989)
[19] DOI: 10.1137/0327039 · Zbl 0694.65026
[20] Womersley RS, Numerical Methods for Structured Problems in Non-smooth Optimization (1981)
[21] DOI: 10.1137/0715011 · Zbl 0384.65032
[22] Grothey A, Decomposition Methods for Nonlinear Nonconvex Optimization Problems (2001)
[23] DOI: 10.1090/S0025-5718-1988-0929544-3
[24] Gupta N, A Higher than First Order Algorithm for Nonsmooth Constrained Optimization (1985)
[25] Lukšan L, Math. Program. 83 pp 373– (1998)
[26] Lukšan L, Institute of Computer Science, Academy of Sciences of the Czech Republic (2000)
[27] DOI: 10.1007/BF01589116 · Zbl 0696.90048
[28] Lukšan L, Institute of Computer Science, Academy of Sciences of the Czech Republic (1999)
[29] DOI: 10.1007/s101070100263 · Zbl 1049.90004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.