×

zbMATH — the first resource for mathematics

Bifurcations in ecosystem models and their biological interpretation. (English) Zbl 1068.92506

MSC:
92D40 Ecology
92D25 Population dynamics (general)
Software:
AUTO
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1093/imanum/10.3.379 · Zbl 0706.65080
[2] DOI: 10.1137/S0036142995281693 · Zbl 0876.58020
[3] Boer, M. P. The dynamics of tritrophic food chains. Ph.D. thesis. 2000, Amsterdam, Netherlands. Vrije Universiteit. de Boelelaan 1087, 1081 HV
[4] DOI: 10.1016/S0025-5564(98)00010-8 · Zbl 0938.92029
[5] DOI: 10.1007/s002850050161 · Zbl 0926.92032
[6] Champneys A. R., Int. Journal of Bifurcation and Chaos 4 pp 795– (1994)
[7] DOI: 10.1142/S0218127496000485 · Zbl 0877.65058
[8] DOI: 10.1016/S0167-2789(96)00206-0 · Zbl 0888.34040
[9] Cunningham A., Mathematics in Microbiology pp 77– (1983)
[10] DOI: 10.1016/S0025-5564(97)10001-3 · Zbl 0927.92028
[11] de Melo W., One–Dimensional Dynamics (1993) · Zbl 0791.58003
[12] DOI: 10.1007/BF00160229 · Zbl 0718.92026
[13] Devaney R. L., An Introduction to Chaotic Dynamical Systems (1989) · Zbl 0695.58002
[14] Diekmann O., Evolutionary Ecology Research 1 pp 261– (1998)
[15] Doedel E. J., AUTO 97: Continuation and Bifurcation software for ordinary differential equations (1997)
[16] DOI: 10.1086/283389
[17] DOI: 10.1016/0167-2789(83)90126-4 · Zbl 0561.58029
[18] DOI: 10.1103/PhysRevLett.50.935
[19] Guckenheimer J., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, volume 42 of Applied Mathematical Sciences 42 (1985)
[20] Hastings A., Food webs pp 211– (1997)
[21] DOI: 10.2307/1940591
[22] Hofbauer J., The Theory of Evolution and Dynamical Systems (1988) · Zbl 0678.92010
[23] Hoppensteadt F. C., Topics in Nonlinear Dynamics, Applications to Physics, Biology and Economic Systems (1996)
[24] DOI: 10.1006/jtbi.1998.0878
[25] DOI: 10.1016/0167-2789(93)90294-B · Zbl 0784.34030
[26] DOI: 10.1016/0025-5564(94)90059-0 · Zbl 0802.92017
[27] DOI: 10.1007/BF00160167 · Zbl 0823.92030
[28] DOI: 10.1007/s002850050088 · Zbl 0887.92030
[29] DOI: 10.1016/S0025-5564(98)10037-8 · Zbl 0939.92034
[30] DOI: 10.1006/bulm.1997.0016 · Zbl 1053.92520
[31] DOI: 10.1016/S0025-5564(98)10083-4
[32] DOI: 10.1016/S0304-3800(00)00280-5
[33] Kuznetsov Y. A., Elements of Applied Bifurcation Theory, volume 112 of Applied Mathematical Sciences 112 (1995) · Zbl 0829.58029
[34] Kuznetsov Y. A., Mathematical Bio– sciences 124 pp 1– (1996) · Zbl 0844.92025
[35] DOI: 10.2307/2265500
[36] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129
[37] DOI: 10.1016/0167-2789(87)90040-6 · Zbl 0626.58038
[38] DOI: 10.1126/science.186.4164.645
[39] DOI: 10.1038/261459a0 · Zbl 1369.37088
[40] DOI: 10.1086/283092
[41] DOI: 10.1086/285714
[42] DOI: 10.1006/tpbi.1995.1023 · Zbl 0854.92022
[43] Metz J. A. J., The dynamics of physiologically structured populations, volume 68 of Lecture Notes in Biomathematics 68 (1986) · Zbl 0614.92014
[44] DOI: 10.1006/jtbi.1997.0419
[45] Odum H. T., Ecological and General Systems: An Introduction to System Ecology (1984)
[46] DOI: 10.1139/f54-039
[47] DOI: 10.1086/282272
[48] DOI: 10.1137/0135020 · Zbl 0391.58014
[49] Smith H. L., The Theory of the Chemostat (1994)
[50] Thompson J. M. T., Nonlinear Dynamics and Chaos (1986)
[51] van Strien, S. J. 1991.Structures in Dynamics, 111–160. Elsevier.
[52] DOI: 10.1016/S0025-5564(99)00044-9 · Zbl 0947.92030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.