×

zbMATH — the first resource for mathematics

A combinatorial formula for the character of the diagonal coinvariants. (English) Zbl 1069.05077
Let \(R_n={\mathbb C}[{\mathbf x},{\mathbf y}]/I\) be the algebra of coinvariants for the diagonal action of the symmetric group. Here \({\mathbb C}[{\mathbf x},{\mathbf y}]={\mathbb C}[x_1,y_1,\ldots,x_n,y_n]\) and \(I\) is the ideal generated by the \(S_n\)-invariant polynomials without constant term. The algebra \(R_n\) is a doubly graded \(S_n\)-module. Its graded character is encoded by means of its Frobenius series \({\mathcal F}_{R_n}(z;q,t)\). A celebrated conjecture of Garsia and Haiman confirmed by Haiman expresses \({\mathcal F}_{R_n}(z;q,t)\) as \(\nabla e_n(z)\), where \(\nabla\) is a linear operator defined in terms of modified Macdonald symmetric functions and \(e_n(z)\) is the \(n\)th elementary symmetric function. Numerious recent results suggest that one should understand the rather mysterious quantity \(\nabla e_n(z)\) in more combinatorial terms.
In the paper under review the authors conjecture a combinatorial formula for the full expansion of \(\nabla e_n(z)\) in terms of monomials, generalizing the Garsia-Haglund formula \(C_n(q,t)=\langle\nabla e_n,e_n\rangle\) for the \(q,t\)-analogue \(C_n(q,t)\) of the Catalan numbers, the Haglund-Loehr conjecture \({\mathcal H}_n(q,t)=\langle\nabla e_n,e_1^n\rangle\) for the Hilbert series \({\mathcal H}_n(q,t)\) of \(R_n\), and a conjecture of Egge, Haglund, Killpatrick, and Kremer (Zbl 1011.05006) expressing \(\langle\nabla e_n,h_de_{n-d}\rangle\) in terms of Schröder paths. The authors prove that their formula has many properties supporting the conjecture. In particular, it is a symmetric function which is Schur positive. Finally, the authors extend their considerations to higher powers \(\nabla^me_n(z)\), giving corresponding conjectured formulas and examining their properties. The results obtained make use of the theory of ribbon tableau generating functions of Lascoux-Leclerc-Thibon.

MSC:
05E10 Combinatorial aspects of representation theory
05A30 \(q\)-calculus and related topics
20C30 Representations of finite symmetric groups
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions , Methods Appl. Anal. 6 (1999), 363–420. · Zbl 0956.33011
[2] E. S. Egge, J. Haglund, K. Killpatrick, and D. Kremer, A Schröder generalization of Haglund’s statistic on Catalan paths , Electron. J. Combin. 10 (2003), research paper 16. · Zbl 1011.05006
[3] A. M. Garsia and J. Haglund, A positivity result in the theory of Macdonald polynomials , Proc. Natl. Acad. Sci. USA 98 (2001), 4313–4316. · Zbl 1066.05144 · doi:10.1073/pnas.071043398
[4] –. –. –. –., “A proof of the \(q,t\)-Catalan positivity conjecture” in LaCIM 2000 Conference on Combinatorics, Computer Science and Applications (Montreal) , Discrete Math. 256 , Elsevier, Amsterdam, 2002, 677–717. · Zbl 1028.05115 · doi:10.1016/S0012-365X(02)00343-6
[5] A. M. Garsia and M. Haiman, A remarkable \(q,t\)-Catalan sequence and \(q\)-Lagrange inversion , J. Algebraic Combin. 5 (1996), 191–244. · Zbl 0853.05008 · doi:10.1023/A:1022476211638
[6] I. M. Gessel, “Multipartite \(P\)-partitions and inner products of skew Schur functions” in Combinatorics and Algebra (Boulder, Colo., 1983) , Contemp. Math. 34 , Amer. Math. Soc., Providence, 1984, 289–317. · Zbl 0562.05007
[7] J. Haglund, Conjectured statistics for the \(q,t\) -Catalan numbers, Adv. Math. 175 (2003), 319–334. · Zbl 1043.05012 · doi:10.1016/S0001-8708(02)00061-0
[8] –. –. –. –., A proof of the \(q,t\)-Schröder conjecture , Int. Math. Res. Not. 2004 , no. 11, 525–560. · Zbl 1069.05075 · doi:10.1155/S1073792804132509
[9] J. Haglund and N. Loehr, “A conjectured combinatorial formula for the Hilbert series for diagonal harmonics” to appear in Formal Power Series and Algebraic Combinatorics (Melbourne, Australia, 2002) , http://www.math.upenn.edu/\(\tilde\;\)jhaglund/research.html · Zbl 1070.05007 · doi:10.1016/j.disc.2004.01.022
[10] Mark Haiman, Conjectures on the quotient ring by diagonal invariants , J. Algebraic Combin. 3 (1994), 17–76. · Zbl 0803.13010 · doi:10.1023/A:1022450120589
[11] –. –. –. –., “\(t,q\)-Catalan numbers and the Hilbert scheme” in Selected Papers in Honor of Adriano Garsia (Taormina, Italy, 1994) , Discrete Math. 193 , Elsevier, Amsterdam, 1998, 201–224. · Zbl 1061.05509 · doi:10.1016/S0012-365X(98)00141-1
[12] –. –. –. –., Hilbert schemes, polygraphs and the Macdonald positivity conjecture , J. Amer. Math. Soc. 14 (2001), 941–1006. JSTOR: · Zbl 1009.14001 · doi:10.1090/S0894-0347-01-00373-3 · links.jstor.org
[13] –. –. –. –., Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , Invent. Math. 149 (2002), 371–407. · Zbl 1053.14005 · doi:10.1007/s002220200219
[14] –. –. –. –., “Combinatorics, symmetric functions and Hilbert schemes” in Current Developments in Mathematics (Cambridge, Mass., 2002) , International Press, Somerville, Mass., 2003, 39–112.
[15] G. James and A. Kerber, The Representation Theory of the Symmetric Group , Encyclopedia Math. Appl. 16 , Addison-Wesley, Reading, Mass., 1981. · Zbl 0491.20010
[16] M. Kashiwara and T. Tanisaki, Parabolic Kazhdan-Lusztig polynomials and Schubert varieties , J. Algebra 249 (2002), 306–325. · Zbl 1021.17015 · doi:10.1006/jabr.2001.8690
[17] S. V. Kerov, A. N. Kirillov, and N. Yu. Reshetikhin, Combinatorics, the Bethe ansatz and representations of the symmetric group (in Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), 50–64.; English translation in J. Soviet Math. 41 (1988), 916–924. · Zbl 0617.20024
[18] A. N. Kirillov and N. Yu. Reshetikhin, The Bethe ansatz and the combinatorics of Young tableaux (in Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), 65–115.; English translation in J. Soviet Math. 41 (1988), 925–955. · Zbl 0617.20025
[19] A. Lascoux, B. Leclerc, and J.-Y. Thibon, Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties , J. Math. Phys. 38 (1997), 1041–1068. · Zbl 0869.05068 · doi:10.1063/1.531807
[20] B. Leclerc and J.-Y. Thibon, “Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials” in Combinatorial Methods in Representation Theory (Kyoto, 1998) , Adv. Stud. Pure Math. 28 , Kinokuniya, Tokyo, 2000, 155–220. · Zbl 1058.20006
[21] N. Loehr, Conjectured statistics for the higher \(q,t\)-Catalan sequences , preprint, 2003, http://www.math.upenn.edu/\(\tilde\;\)nloehr/mcat.pdf
[22] ——–, Multivariate analogues of Catalan numbers, parking functions, and their extensions , Ph.D. dissertation, University of California, San Diego, San Diego, 2003, http://math.ucsd.edu/\(\tilde\;\)thesis/year/2003.html N. A. Loehr and J. B. Remmel, Conjectured combinatorial models for the Hilbert series of generalized diagonal harmonics modules , Electron. J. Combin. 11 (2004), no. R68.
[23] I. G. Macdonald, Symmetric Functions and Hall Polynomials , 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1995. · Zbl 0824.05059
[24] I. Pak, Ribbon tile invariants , Trans. Amer. Math. Soc. 352 (2000), 5525–5561. JSTOR: · Zbl 0963.05030 · doi:10.1090/S0002-9947-00-02666-0 · links.jstor.org
[25] A. Schilling, M. Shimozono, and D. E. White, “Branching formula for \(q\)-Littlewood-Richardson coefficients” in Formal Power Series and Algebraic Combinatorics (Scottsdale, Ariz., 2001) , Adv. in Appl. Math. 30 , Elsevier, San Diego, Calif., 2003, 258–272. · Zbl 1027.05108 · doi:10.1016/S0196-8858(02)00535-3
[26] M.-P. Schützenberger, “La correspondance de Robinson” in Combinatoire et représentation du groupe symétrique (Strasbourg, 1976) , Lecture Notes in Math. 579 , Springer, Berlin, 1977, 59–113.
[27] R. P. Stanley, Invariants of finite groups and their applications to combinatorics , Bull. Amer. Math. Soc. (N.S.) 1 (1979), 475–511. · Zbl 0497.20002 · doi:10.1090/S0273-0979-1979-14597-X
[28] ——–, Enumerative Combinatorics, Vol. 2 , Cambridge Stud. Adv. Math. 62 , Cambridge Univ. Press, Cambridge, 1999. · Zbl 0928.05001
[29] D. W. Stanton and D. E. White, A Schensted algorithm for rim hook tableaux , J. Combin. Theory Ser. A 40 (1985), 211–247. · Zbl 0577.05001 · doi:10.1016/0097-3165(85)90088-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.